cho tam giác ABC vuông tại A, AB = a đường cao AH, tan B = \(\dfrac{\sqrt{3}}{2}\). Từ H kẻ HI, HK vuông góc với AB và AC. Tính diện tích tứ giác BIKC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt AB=x
dễ chứng tam giác HBA và tam giác ABC đồng dạng => AB2 =BH.BC <=> x2 = 4BH => BH= \(\frac{x^2}{4}\)
pytago cho tam giác HAB : AB2= BH2+ AH2 => AH2 = x2- \(\frac{x^4}{16}\)=> AH = \(\frac{x}{4}\sqrt{16-x^2}\)
SAIHK = HI.HK \(\le\frac{HI^2+HK^2}{2}=\frac{AH^2}{2}\)= \(\frac{x^2\left(16-x^2\right)}{32}\)
áp dụng ab\(\le\frac{\left(a+b\right)^2}{4}\)=> \(x^2\left(16-x^2\right)\le\frac{\left(x^2+16-x^2\right)^2}{4}=\frac{16^2}{4}\)
=> SAIHK \(\le\frac{16^2}{4.32}=2\)
Đạt được khi HI=HK và x2=16-x2 => x=AB= 2\(\sqrt{2}\)
HI=HK => ABC vuông cân ở A
a) dien h tam giac ABC la :S ABC =1/2 AB * AC = 1/2* 6 *8 = 24(m2)
b) Tu giac AIHK co :
goc AIH = goc HKA = goc KAI = 90 do
suy ra AIKH la hinh chu nhat
c)Tu giac AHMD co :
AK = KM
KH=KD
suy ra AHMD la hinh binh hanh
ma goc HKC = 90 do
suy ra AHMD la hinh thoi
c) Trong tam AHC vuong tai H co :
KH la trung tuyen
suy ra KH = 1/2 AC
Chung minh tuong tu ta co : HI = 1/2 AB
De IHKA la hinh vuong thi IH = HK
ma IH = 1/2 AB
KH = 1/2 AC
suy ra AB = AC
suy ra tam giac ABC can
ma tam giac ABC vuong(gt)
suy ra tam giac ABC vuong can
Vay tam giac ABC vuong can thi AIHK la hinh vuong
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)
Do đó: AEHF là hình chữ nhật
mik ko bít
I don't now
................................
.............
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Xét tứ giác AKHI có
\(\widehat{KAI}=90^0\)
\(\widehat{HIA}=90^0\)
\(\widehat{HKA}=90^0\)
Do đó: AKHI là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HI là đường cao ứng với cạnh huyền AB, ta được:
\(AI\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC, ta được:
\(AK\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)