Mik đag cần gấp. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=1^2+2^2+3^2+....+59^2\)
\(E=1+2\left(1+1\right)+3\left(2+1\right)+...+59\left(58+1\right)\)
\(E=1+1\times2+2+2\times3+3+....+58\times59+59\)
\(E=\left(1+2+3+...+59\right)+\left(1\times2+2\times3+....+58\times59\right)\)
Ta đặt :
\(A=1+2+3+...+59\)
Số số hạng là \(\left(59-1\right)\div1+1=59\) số hạng
Tổng là \(\left(59+1\right)\times59\div2=1770\)
=> \(A=1770\)
Ta đặt
\(B=1\times2+2\times3+...+58\times59\)
\(3B=1\times2\times3+2\times3\times3+....+58\times59\times3\)
\(3B=1\times2\times3+2\times3\times\left(4-1\right)+...+58\times59\times\left(57-54\right)\)
\(3B=1\times2\times3+2\times3\times4-2\times3\times1+...+58\times59\times57-58\times59\times54\)
\(3B=58\times59\times57\)
\(B=58\times59\times19\)
\(B=65018\)
=> \(E=A+B\)
=> \(E=1770+65018\)
=> \(E=66788\)
Trước hết ta sẽ chứng minh \(1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*). Thật vậy, với \(n=1\) thì hiển nhiên \(1^2=\dfrac{1\left(1+1\right)\left(2.1+1\right)}{6}\). Giả sử (*) đúng đến \(n=k\), khi đó \(1^2+2^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\). Ta cần chứng minh (*) đúng với \(n=k+1\). Ta có:
\(1^2+2^2+...+k^2+\left(k+1\right)^2\)
\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(=\dfrac{\left(k+1\right)\left(2k^2+k+6\left(k+1\right)\right)}{6}\)
\(=\dfrac{\left(k+1\right)\left(2k^2+7k+6\right)}{6}\)
\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
\(=\dfrac{\left(k+1\right)\left[\left(k+1\right)+1\right]\left[2\left(k+1\right)+1\right]}{6}\).
Vậy (*) đúng với \(n=k+1\). Ta có đpcm. Thay \(n=59\) thì ta có:
\(E=1^2+2^2+...+59^2=\dfrac{59\left(59+1\right)\left(2.59+1\right)}{6}=70210\)
(x-2)3=216
=>\(\left(x-2\right)^3=6^3\)
=>x-2=6
=>x=8
115x ² + x ² -x + 1/4 + 15/4 = (x-1/2) ² +115x ² + 15/4 ≥ 15/4
⇒ pt vô nghiệm
\(\left(x-1\right)^2=5^2\\\Rightarrow x-1=5\\ \Rightarrow x=5+1=6\)
Bài 2:
a. Chỗ gặp nhau cách B số km là:
$40\times 3=120$ (km)
b. Chỗ gặp nhau cách A số km là:
$50\times 3=150$ (km)
Độ dài quãng đường AB:
$120+150=270$ (km)
\(\dfrac{x}{15}\)+\(\dfrac{x}{12}\)=4/1+1/2=9/2
=>x(\(\dfrac{1}{15}\)+\(\dfrac{1}{12}\))=9/2
=>x\(\cdot\)\(\dfrac{3}{20}\)=9/2
=>x=9/2:3/20=30
Vậy x=30
\(\dfrac{x}{15}+\dfrac{x}{12}=\dfrac{9}{2}\Rightarrow\left(\dfrac{1}{15}+\dfrac{1}{12}\right)x=\dfrac{9}{2}\)
\(\Rightarrow\left(\dfrac{12+18}{180}\right)x=\dfrac{9}{2}\Rightarrow\dfrac{30}{180}x=\dfrac{9}{2}\Rightarrow\dfrac{1}{6}x=\dfrac{9}{2}\Rightarrow x=\dfrac{9}{2}.6=27\)
1 new friends
2 time
3 forms
4 20
5 Half
6 stress
B
1 F
2 T
3 T
4 T
5 T
6 ?
cảm ơn bạn nhìu ạ , nhug trog bài đọc có not given nữa á bạn câu b á