cho hình bình hành ABCD.Gọi I và K lần lượt là trung điểm của CD,AB. chứng minh tứ giác AKID là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ABCD là hình bình hành ròi nha bạn
b: Xét tứ giác AKCH co
AK//HC
AK=HC
Do đó: AKCH là hình bình hành
=>AH//KC
Xét ΔDQC có
H là trung điểm của DC
HP//QC
Do đó: P là trung điểm của DQ
Xét ΔABP có
K là trung điểm của BA
KQ//AP
Do đó: Q là trung điểm củaBP
=>DP=PQ=QB
a: Ta có: ABCD là hình bình hành
=>AB=CD(1)
Ta có: E là trung điểm của AB
=>\(EA=EB=\dfrac{AB}{2}\left(2\right)\)
Ta có: F là trung điểm của CD
=>\(FC=FD=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra EA=EB=FC=FD
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFDlà hình bình hành
Hình bình hành AEFD có \(AE=AD\left(=\dfrac{AB}{2}\right)\)
nên AEFD là hình thoi
c: Xét tứ giác EBCF có
BE//FC
BE=FC
Do đó: EBCF là hình bình hành
Hình bình hành EBCF có \(EB=BC\left(=\dfrac{AB}{2}\right)\)
nên EBCF là hình thoi
=>EC\(\perp\)BF tại trung điểm của mỗi đường
=>EC\(\perp\)BF tại K và K là trung điểm chung của EC và BF
Ta có: AEFD là hình thoi
=>AF\(\perp\)ED tại trung điểm của mỗi đường
=>AF\(\perp\)ED tại I và I là trung điểm chung của AF và ED
Ta có: AEFD là hình thoi
=>EF=AD
mà AD=DC/2
nên EF=DC/2
Xét ΔEDC có
EF là đường trung tuyến
\(EF=\dfrac{CD}{2}\)
Do đó: ΔEDC vuông tại E
Xét tứ giác EIFK có
\(\widehat{EIF}=\widehat{EKF}=\widehat{IEK}=90^0\)
=>EIFK là hình chữ nhật
d: Để EIFK là hình vuông thì FI=FK
mà \(FI=\dfrac{FA}{2};FK=\dfrac{FB}{2}\)
nên FA=FB
=>ΔFAB cân tại F
Ta có: ΔFAB cân tại F
mà FE là đường trung tuyến
nên FE\(\perp\)AB
ta có: FE\(\perp\)AB
FE//AD
Do đó: AD\(\perp\)AB
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
a: Xét tứ giác AMCN có
AM//CN
AM=CN
=>AMCN là hình bình hành
Xét tứ giác AMND có
AM//ND
AM=ND
AM=AD
=>AMND là hình thoi
b: AMND là hình thoi
=>I là trung điểm chung của AN và MD và AN vuông góc MD tại N
Xét tứ giác MBCN có
MB//CN
MB=CN
MB=BC
=>MBCN là hình thoi
=>MC vuông góc BN tại K và K là trung điểm chung của MC và BN
Xét ΔMDC có
MN là trung tuyến
MN=DC/2
=>ΔMDC vuông tại M
Xét tứ giác MINK có
góc MIN=góc MKN=góc IMK=90 độ
=>MINK là hình chữ nhật
c: Xét ΔMDC có MI/MD=MK/MC
nên IK//DC
Bài 8:
a: Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
mà AE=AD
nên AEFD là hình thoi
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
a) Ta có: \(AB=DC,AB//CD\)(ABCD là hình bình hành)
Mà \(K,E\in AB,CD;AK=\dfrac{1}{2}AB;CE=\dfrac{1}{2}CD\)
\(\Rightarrow AK=CE\) và \(AK//CE\)
=> AECK là hình bình hành
b) Ta có: O là giao điểm 2 đường chéo AC và BD
=> O là trung điểm AC
=> O là trung điểm KE(AECK là hình bình hành)
=> E,O,K thẳng hàng