a+b+c =2021 1/a+1/b+1/c =1/2001 tính A= (a-2021)(b-2021)(c-2021)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta nhớ đến HĐT quen thuộc:
$a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)$
Thay $a+b+c=a^3+b^3+c^3=1$ vô thì:
$1=1^3-3(a+b)(b+c)(c+a)\Rightarrow (a+b)(b+c)(c+a)=0$
$\Rightarrow a+b=0$ hoặc $b+c=0$ hoặc $c+a=0$
Không mất tổng quát, giả sử $a+b=0$. Khi đó: $a=-b$ và $c=1-(a+b)=1$
$A=a^{2021}+b^{2021}+c^{2021}=(-b)^{2021}+b^{2021}+1^{2021}=1$
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow ab^2+a^2b+ac^2+a^2c+bc^2+b^2c+2abc=0\)
\(\Leftrightarrow ab^2+a^2b+ac^2+bc^2+a^2c+abc+b^2c+abc=0\)
\(\Leftrightarrow\left(a+b\right)ab+c^2\left(a+b\right)+bc\left(a+b\right)+ac\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(c^2+ab+bc+ac\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Vậy ta có các trường hợp: \(a=-b,c=0\)hoặc \(b=-c,a=0\)hoăc \(a=-c,b=0\).
Với từng trường hợp ta đều có đpcm.
P=a2021+b2021+c2021
P=(a+b+c)2021
mà a+b+c = 1
=> P= 12021=1
Bài làm:
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0
=> Hoặc a=-b hoặc b=-c hoặc c=-a
Ko mất tổng quát, g/s a=-b
a) Ta có: vì a=-b thay vào ta được:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
=> đpcm
b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)
=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0
=> Hoặc a=-b hoặc b=-c hoặc c=-a
Ko mất tổng quát, g/s a=-b
a) Ta có: vì a=-b thay vào ta được:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
=> đpcm
b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)
=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2001}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2b+ab^2\right)+\left(abc+b^2c\right)+\left(ac^2+bc^2\right)+\left(a^2c+abc\right)=0\)
\(\Leftrightarrow ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Khi đó \(a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\).
Suy ra \(a=2021\)hoặc \(b=2021\)hoặc \(c=2021\).
Suy ra \(A=0\).