Mọi người giải giúp mk câu 7 với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S R N I G G' S
\(\Rightarrow i=90^o-40^o=50^o\)
\(i=i'\Leftrightarrow i'=50^o\)
c,
S R N I a r
Đầu tiên quay tia phản xạ 1 góc : \(50^o+50^o+40^o=140^o\) theo ngược chiều kim đồng hồ
\(\Rightarrow ihợpvớii':40^o\)
\(\Rightarrow i=40^o:2=20^o\)
\(i'=i\Leftrightarrow i'=20^o\)
Sau đó vẽ tia pháp tuyến NI , sao cho NI là phân giác của \(\widehat{SIR}\)
Vẽ gương vuông góc vs NI
\(a=90^o-20^o=70^o\)
\(\Rightarrow\) Gương phải quay 1 góc 70o
a) \(A=\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}=\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}}{\sqrt{y}}\)
b) \(B=\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}=\dfrac{\sqrt{a}\left(1+\sqrt{ab}\right)-\sqrt{b}\left(1+\sqrt{ab}\right)}{\left(\sqrt{ab}-1\right)\left(1+\sqrt{ab}\right)}=\dfrac{\left(1+\sqrt{ab}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}-1}=\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\)
c) \(C=\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}=\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}=1-\sqrt{x}+x\)
d) \(D=\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}-y=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
e) \(\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}+\dfrac{4-x}{2-\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}+\dfrac{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}{2-\sqrt{x}}=\sqrt{x}+2+2+\sqrt{x}=2\sqrt{x}+4\)
\(-23,8\cdot41,9-23,8\cdot67,2+23,8\cdot9,1\)
\(=-23,8\cdot\left(41,9+67,2-9,1\right)\)
\(=-23,8\cdot100\)
\(=-2380\)
`(15-x)+(x-12)=7-(-5+x)`
`=>15-x+x-12=7+5-x`
`=>3=12-x`
`=>x=12-3`
`=>x=9`
Vậy `x=9`
\(=\dfrac{1}{2}\left(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{10}{39}=\dfrac{5}{39}\)
$n_{NaCl} = C_M.V = 0,1.2,5 = 0,25(mol)$
$m_{NaCl} = n.M = 0,25.58,5 = 14,625(gam)$