Cho M = 2 + 22 + 23 + ... + 210. Chứng minh rằng M chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(=14+2^3\cdot14+...+2^{117}\cdot14\)
\(=14\cdot\left(1+2^3+...+2^{117}\right)⋮7\)
Ta có: \(A=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=62+2^5\cdot62+...+2^{115}\cdot62\)
\(=62\cdot\left(1+2^5+...+2^{115}\right)⋮31\)
Ta có: \(A=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=126+126\cdot2^6+...+126\cdot2^{114}\)
\(=126\cdot\left(1+2^6+...+2^{114}\right)⋮21\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+...+3^{58}\right)\\ A=13\left(3+...+3^{58}\right)⋮13\)
\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\\ M=\left(2+2^2+2^3+2^4\right)+...+2^{16}\left(2+2^2+2^3+2^4\right)\\ M=\left(2+2^2+2^3+2^4\right)\left(1+...+2^{16}\right)\\ M=30\left(1+...+2^{16}\right)⋮5\)
Lời giải:
$M=4+4+2^3+...+2^{60}$
$=8+(2^3+2^4)+(2^5+2^6)+...+(2^{59}+2^{60})$
$=8+2^3(1+2)+2^5(1+2)+...+2^{59}(1+2)$
$=8+2^3.3+2^5.3+....+2^{59}.3$
$=8+3(2^3+2^5+...+2^{59})$
Vì $3(2^3+2^5+...+2^{59})\vdots 3$ mà $8\not\vdots 3$ nên $M\not\vdots 3$
Bạn xem lại đề.
\(M=2+2^2+...+2^{60}\)
\(=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\cdot\left(2+...+2^{59}\right)⋮3\)
\(M=2+2^2+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Áp dụng hàng đơn vị , chia từng cặp , như vậy mỗi cặp có hàng đơn vị sẽ có dạng 1 + 2 + 3 + 4 + ..... + 10 = 55 và sẽ chia hết cho 5 .
Vậy M hoàn toàn chia hết cho 5 .
Tưởng ghi kiểu 2^1 + 2^2 + 2^3 + ... + 2^20 chứ ai dè ra đề bài dễ quá ta XD
Bài 3:
a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Bài 1:
Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy: A có chữ số tận cùng là 0
Bài 2:
Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)
\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)
\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)
mà \(8\left(125a+12b+c\right)⋮8\)
và \(2c+4b+d⋮8\)
nên \(abcd⋮8\)(đpcm)
\(M=2+2^2+2^3+.............+2^{10}\)
\(\Leftrightarrow M=\left(2+2^2+.....+2^5\right)+\left(2^6+2^7+....+2^{10}\right)\)
\(\Leftrightarrow M=2\left(1+2+.....+2^4\right)+2^6\left(1+2+....+2^4\right)\)
\(\Leftrightarrow M=2.31+2^6.31\)
\(\Leftrightarrow M=31\left(2+2^6\right)⋮31\left(đpcm\right)\)