K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

T chứng minh với tử bằng 4 :v, còn bằng b thì thua

\(P=a+\dfrac{4}{\left(a-b\right)\left(b+1\right)^2}\)

\(2P=2a+\dfrac{8}{\left(a-b\right)\left(b+1\right)^2}=2a+\dfrac{16}{2\left(a-b\right)\left(b+1\right)^2}\)

\(=2\left(a-b\right)+b+1+b+1+\dfrac{16}{2\left(a-b\right)\left(b+1\right)^2}-2\ge4\sqrt[4]{2\left(a-b\right).\left(b+1\right).\left(b+1\right).\dfrac{16}{2\left(a-b\right)\left(b+1\right)^2}}-2=6\)

\(\Rightarrow P\ge3\)

9 tháng 10 2017

Trên tử là số 4 hay b vậy :v

11 tháng 3 2018

A=\(\left(a+b\right)\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)

= \(\dfrac{a}{a}+\dfrac{b}{b}+\dfrac{a}{b}+\dfrac{b}{a}\)

= \(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)

Áp dụng BĐT cô si cho 2 số ta có

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

\(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge4\)

⇔ A ≥4

=> Min A =4

dấu "=" xảy ra khi

\(\dfrac{a}{b}=\dfrac{b}{a}\)

⇔a2=b2

⇔a=b

vậy Min A =4 khi a=b

11 tháng 3 2018

b,c tương tự Nguyễn Thiện Minh

3 tháng 1 2019

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2019

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

20 tháng 4 2023

Theo đề ra ta có hệ : 

 \(\left\{{}\begin{matrix}\dfrac{4}{a^2}=1\\\dfrac{1}{a^2}+\dfrac{\dfrac{3}{4}}{b^2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\\dfrac{\dfrac{3}{4}}{b^2}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

Vậy (a,b) = (2,1) 

21 tháng 4 2023

+,Ta có :A thuộc E => thay x=2 và y=0 vào E ta đc a^2=4 => a=2 (loại a=-2 vì a<0 )

+, Tương tự thay B vào E => 3b^2=3 =>b=1(loại b=-1 vì b <0)

=> vậy a =2 b =1 

học tốt ! :)))

17 tháng 7 2017

Áp dụng BĐT AM - GM, ta có:

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)

\(=3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)

\(\ge3+2+2+2=9\)

Dấu "=" xảy ra khi a = b = c

17 tháng 7 2017

Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) có:

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{9\left(a+b+c\right)}{\left(a+b+c\right)}=9\)

Dấu " = " khi a = b = c

30 tháng 12 2017

Đành giải tạm bằng nick này vì sợ một vài thành phần trẻ trâu anti phá phách :poor:

Phân tích và giải

Dễ thấy: Dấu "=" khi \(a=b=c=1\)

\(\Rightarrow L=Σ\dfrac{a}{\left(a+1\right)^2}=\dfrac{3}{4}\text{ và }F=-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=-\dfrac{1}{2}\)

Khi đó \(VT=L-F=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)

Ta sẽ chia làm 2 bước cm:

B1: \(Σ\dfrac{a}{\left(a+1\right)^2}\le\dfrac{3}{4}\). Ta xét BĐT :

\(\dfrac{a}{\left(a+1\right)^2}=\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2k}+a^k\right)}{8\left(a^{2k}+a^k+1\right)}\) (cần tìm \(k\) thỏa mãn)

\(\Leftrightarrow8a\left(a^{2k}+a^k+1\right)-3\left(a^{2k}+a^k\right)\left(a^2+2a+1\right)\le0\)\(\Leftrightarrow f\left(a\right)=-3a^{2k}+2a^{k+1}-3a^{k+2}+2a^{2k+1}-3a^{2k+2}-3a^k+8a\)

\(\Rightarrow f'\left(a\right)=2k\cdot-3a^{2k-1}+\left(k+1\right)2a^k-\left(k+2\right)3a^{k+1}+\left(2k+1\right)2a^{2k}-\left(2k+2\right)3a^{2k+1}-k\cdot3a^{k-1}+8a\)

\(\Rightarrow f'\left(1\right)=0\Rightarrow-12k=0\Rightarrow k=0\)

Hay BĐT phụ cần tìm là \(\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2\cdot0}+a^0\right)}{8\left(a^{2\cdot0}+a^0+1\right)}=\dfrac{1}{4}\) (bài này \(k\) đẹp ra luôn \(\farac{1}{4}\) cộng vào là ok =))

\(\Leftrightarrow-\dfrac{\left(a-1\right)^2}{4\left(a+1\right)^2}\le0\) *Đúng* \(\RightarrowΣ\dfrac{a}{\left(a+1\right)^2}\leΣ\dfrac{1}{4}=\dfrac{3}{4}\)

B2: CM \(-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\le-\dfrac{1}{2}\)

Tự cm nhé Goodluck :v

30 tháng 12 2017

B2 mới khó đó sir :V