K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

\(M=\dfrac{x^2}{x^2-3x}\left(x\ne0;x\ne3\right)\\ M=\dfrac{x^2}{x\left(x-3\right)}\\ M=\dfrac{x}{x-3}\)

\(N=\dfrac{x}{x+1}+\dfrac{3x+1}{x^2-1}\left(x\ne\pm1\right)\\ N=\dfrac{x-1+3x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x}{\left(x+1\right)\left(x-1\right)}\)

28 tháng 8 2021

Còn tiếp:

\(\dfrac{4x}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x}{x^2-1}\)

26 tháng 10 2023

6:

a: ĐKXĐ: x<>0

\(\dfrac{x^3+3x^2+3x+1}{x^2+x}\)

\(=\dfrac{\left(x+1\right)^3}{x\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x}\)

b: ĐKXĐ: x<>1

\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)

\(=\dfrac{\left(x-1\right)^3}{2\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{2}\)

c: ĐKXĐ: x<>-2

\(\dfrac{x^2+4x+4}{2x+4}\)

\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)

\(=\dfrac{x+2}{2}\)

d: ĐKXĐ: x<>-2

\(\dfrac{\left(x-1\right)\left(-x-2\right)}{x+2}\)

\(=\dfrac{\left(-x+1\right)\left(x+2\right)}{x+2}=-x+1\)

e: ĐKXĐ: x<>-y

\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)

g: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{-3x^2-6x}{4-x^2}=\dfrac{3x^2+6x}{x^2-4}\)

\(=\dfrac{3x\left(x+2\right)}{\left(x+2\right)\cdot\left(x-2\right)}=\dfrac{3x}{x-2}\)

7:

a: \(\dfrac{2}{5x^3y^2}=\dfrac{2\cdot4}{20x^3y^2}=\dfrac{8}{20x^3y^2}\)

\(\dfrac{3}{4xy}=\dfrac{3\cdot5\cdot x^2y}{20x^3y^2}=\dfrac{15x^2y}{20x^3y^2}\)

b: \(\dfrac{x}{x^2-2xy+y^2}=\dfrac{x}{\left(x-y\right)^2}\)

\(\dfrac{x}{x^2-xy}=\dfrac{x}{x\left(x-y\right)}=\dfrac{1}{x-y}=\dfrac{\left(x-y\right)}{\left(x-y\right)^2}\)

c: \(\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)

\(\dfrac{2}{2x+4}=\dfrac{2}{2\left(x+2\right)}=\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)

\(\dfrac{3}{3x+6}=\dfrac{3}{3\left(x+2\right)}=\dfrac{6}{6\left(x+2\right)}\)

d:

\(\dfrac{2}{2x-6}=\dfrac{2}{2\left(x-3\right)}=\dfrac{1}{x-3};\dfrac{3}{3x-9}=\dfrac{3}{3\left(x-3\right)}=\dfrac{1}{x-3}\)

\(\dfrac{2}{2x-6}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{3}{3x-9}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{1}{x+3}=\dfrac{x-3}{\left(x+3\right)\left(x-3\right)}\)

a: Ta có: \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)

\(=\left(x^4-4\right)\left[\left(x^2+2\right)^2-4x^2\right]\)

\(=\left(x^4-4\right)\left(x^4+4x^2+4-4x^2\right)\)

\(=\left(x^4-4\right)\cdot\left(x^4+4\right)\)

\(=x^8-16\)

b: Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2+3x^2-3x\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-x^2+2x-1+3x^2-3x\left(x^2-1\right)\)

\(=3x^2+4x-3x^3+3x\)

\(=-3x^3+3x^2+7x\)

22 tháng 11 2021

\(a,A=\dfrac{3x+2-3x+2+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{1}{3x+2}\\ b,B=\dfrac{1}{2}+\dfrac{x}{\dfrac{x+2-x}{x+2}}=\dfrac{1}{2}+\dfrac{x}{\dfrac{2}{x+2}}=\dfrac{1}{2}+\dfrac{x\left(x+2\right)}{2}\\ B=\dfrac{1+x^2+2x}{2}=\dfrac{\left(x+1\right)^2}{2}\)

\(=\dfrac{3x^2-x+3-x^2+2x-1-2x^2-2x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{-x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-1}{x^2+x+1}\)

17 tháng 10 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

\(M=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)

\(=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)

\(=\left[\frac{x^2+3x+2}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x^2+9x}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)

\(=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}.\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)

\(=\frac{2-8x^2}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{2\left(1-4x^2\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{2\left(1-2x\right)\left(1+2x\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)

\(=\frac{1+2x}{3x}+\frac{x^2-3x-1}{3x}\)

\(=\frac{1+2x+x^2-3x-1}{3x}=\frac{x^2-x}{3x}=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)

b) Với \(x=6013\)( thỏa mãn ĐKXĐ )

Thay \(x=6013\)vào biểu thức ta được: 

\(M=\frac{6013-1}{3}=\frac{6012}{3}=2004\)

14 tháng 3 2022

a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)

\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)

b. -Để M thuộc Z thì:

\(\left(x^2+x-2\right)⋮\left(x+3\right)\)

\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)

\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)

\(\Rightarrow4⋮\left(x+3\right)\)

\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)

\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)

c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)

\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)

 

15 tháng 10 2023

2:

a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)

b: \(2\left(x-1\right)+x^2-x\)

\(=2\left(x-1\right)+x\left(x-1\right)\)

\(=\left(x-1\right)\left(x+2\right)\)

c: \(3x^2+14x-5\)

\(=3x^2+15x-x-5\)

\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)

3: 

a: \(2x\left(x-1\right)-2x^2=4\)

=>\(2x^2-2x-2x^2=4\)

=>-2x=4

=>x=-2

b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)

=>\(x^2-3x-\left(x^2+x-2\right)=5\)

=>\(x^2-3x-x^2-x+2=5\)

=>-4x=3

=>x=-3/4

c: \(4x^2-25+\left(2x+5\right)^2=0\)

=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)

=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)

=>4x(2x+5)=0

=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)

9 tháng 9 2023

1) \(x\left(x-1\right)+\left(1-x\right)^2\)

\(=x\left(x-1\right)+\left(x-1\right)^2\)

\(=\left(x-1\right)\left(x+x-1\right)\)

\(=\left(x-1\right)\left(2x-1\right)\)

2) \(2x\left(x-2\right)-\left(x-2\right)^2\)

\(=\left(x-2\right)\left[2x-\left(x-2\right)\right]\)

\(=\left(x-2\right)\left(2x-x+2\right)\)

\(=\left(x-2\right)\left(x+2\right)\) 

3) \(3x\left(x-1\right)^2-\left(1-x\right)^3\)

\(=3x\left(x-1\right)^2+\left(x-1\right)^3\)

\(=\left(x-1\right)^2\left(3x+x-1\right)\)

\(=\left(x-1\right)^2\left(4x-1\right)\)

4) \(3x\left(x+2\right)-5\left(x+2\right)^2\)

\(=\left(x+2\right)\left[3x-5\left(x+2\right)\right]\)

\(=\left(x+2\right)\left(3x-5x-10\right)\)

\(=\left(x+2\right)\left(-2x-10\right)\)

\(=-2\left(x+2\right)\left(x+5\right)\)

9 tháng 9 2023

Bạn ơi nếu bình chọn cho bản thân mình được không bạn