mình đag cần rất rất gấp. mọi ng giúppppppp mình vớiiiiiiiiiii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(\hept{\begin{cases}\left|x-1\right|+\left|x-7\right|\ge\left|x-1-x+7\right|=6\\\left|x-3\right|\ge0\end{cases}}\)
Vậy \(A\ge6\) dấu bằng xảy ra khi x=3
DỰng thêm đường DG,CH song song vơi AB như hình vẽ
ta có : \(\widehat{HCD}=\widehat{DCA}-\widehat{HCA}=110^0-90^0=30^0\)
mà ta có \(\hept{\begin{cases}\widehat{HCD}=\widehat{CDG}=30^0\\\widehat{GDE}=\widehat{DÈF}=30^0\end{cases}}\Rightarrow\widehat{CDE}=\widehat{CDG}+\widehat{GDE}=30^0+30^0=60^0\)
A=/x-1/+/x-3/+/x-5/+/x-7/=/x-1/+/3-x/+/x-5/+/7-x/>=/x-1+3-x/+/x-5+7-x/=4
dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1>=0,3-x>=0\\x-5>=0,7-x>=0\end{cases}\Rightarrow\hept{\begin{cases}x>=1,3>=x\\x>=5,7>=x\end{cases}\Rightarrow}\hept{\begin{cases}1< =x< =3\\5< =x< =7\end{cases}}}\)
vậy 1<=x<=3 và 5<=x<=7
Ta có : \(\left|x-2\right|+\left|y-5\right|+10\ge10\)
\(\Rightarrow\frac{-15}{\left|x-2\right|+\left|y-5\right|+10}\ge-\frac{15}{10}=-\frac{3}{2}\)
\(\Rightarrow B=3-\frac{15}{\left|x-2\right|+\left|y-5\right|+10}\ge3-\frac{3}{2}=\frac{3}{2}\)
Dấu ''='' xảy ra khi x = 2 ; y = 5
Vậy GTNN của B bằng 3/2 tại x = 2 ; y = 5
từ điểm B kẻ \(Bz//Cy=>\angle\left(BCy\right)+\angle\left(CBz\right)=180^o\)(góc trong cùng phía)
\(=>\angle\left(CBz\right)=180^o-130^o=50^o\)
\(=>\angle\left(ABz\right)=\angle\left(ABC\right)+\angle\left(CBz\right)=50^o+72^o=122^o\)
\(=>\angle\left(BAx\right)+\angle\left(ABz\right)=180^o\)
mà 2 góc này ở vị trí trong cùng phía
\(=>Ax//Bz=>Ax//Cy\)