1người dự định đi bộ từ a đến b với vận tốc 5km/h không đổi nhưng khi đi được 1/3 quãng đường thì giảm còn 1km/h nên đến nơi chậm mất 20p .tính TG dự định đi của người ấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc ban đầu của người đó là x (km/h; \(x>5\))
Thời gian dự định là \(\dfrac{60}{x}\) (giờ)
Vận tốc lúc sau là x - 5 (km/h)
Thời gian người đó đi trên nửa quãng đường đầu là \(\dfrac{30}{x}\) (giờ)
Thời gian người đó đi trên nửa quãng đường sau là \(\dfrac{30}{x-5}\) (giờ)
Do người đó đến B chậm hơn dự định 1 giờ => ta có phương trình:
\(\dfrac{30}{x}+\dfrac{30}{x-5}=\dfrac{60}{x}+1\)
<=> \(\dfrac{30}{x-5}-\dfrac{30}{x}-1=0\)
<=> \(\dfrac{30x-30\left(x-5\right)-x\left(x-5\right)}{x\left(x-5\right)}=0\)
<=> 30x - 30x + 150 - x2 + 5x = 0
<=> x2 -5x - 150 = 0
<=> (x-15)(x+10) = 0
Mà x > 5
<=> x - 15 = 0
<=> x = 15 (tm)
KL Vận tốc dự định của người đó là 15 km/h
Gọi S1, S2 là quãng đường đầu và quãng đường cuối.
v1, v2 là vận tốc quãng đường đầu và vận tốc trên quãng đường cuối
t1, t2 là thời gian đi hết quãng đường đầu và thời gian đi hết quãng đường cuối
v3, t3 là vận tốc và thời gian dự định.
Theo bài ra ta có:
v3 = v1 = 5 Km/h; S1 = \(\frac{S}{3}\); S2 = \(\frac{2}{3}S\); v2 = 12 Km
Do đi xe nên người đến xớm hơn dự định 28ph nên:
\(t_3-\frac{28}{60}=t_1-t_2\) (1)
Mặt khác: \(t_3=\frac{S}{v_3}=\frac{S}{5}\Rightarrow S=5t_3\) (2)
\(\begin{cases}t_1=\frac{S_1}{v_1}=\frac{\frac{S}{3}}{5}=\frac{S}{15}\\t_2=\frac{S_2}{v_2}=\frac{\frac{2}{3}S}{12}=\frac{2}{36}S\end{cases}\)
\(\Rightarrow t_1+t_2=\frac{S}{15}+\frac{S}{18}\) (3)
Thay (2) vào (3) ta có:
\(\Rightarrow t_1+t_2=\frac{t_3}{3}+\frac{5t_3}{18}\)
So sánh (1) và (4) ta được:
\(t_3-\frac{28}{60}=\frac{t_3}{3}+\frac{5t_3}{18}\Leftrightarrow t_3=1,2h\)
Vậy: nếu người đó đi bộ thì phải mất 1h12ph.
Đặt vận tốc người đó đi bộ trên 1/3 quãng đường đầu là \(v_1=5\left(\dfrac{km}{h}\right)\)
vận tốc người đó đi bộ trên quãng đường còn lại là \(v_2=1\left(\dfrac{km}{h}\right)\)
Vận tốc trung bình của người đó là
\(v=\dfrac{s}{s\left(\dfrac{1}{3v_1}+\dfrac{2}{3v_2}\right)}=\dfrac{1}{1\left(\dfrac{1}{3\cdot5}+\dfrac{2}{3\cdot1}\right)}=\dfrac{15}{11}\left(\dfrac{km}{h}\right)\)
Quãng đường AB là
\(s_{AB}=v_1t=5t\Rightarrow t=\dfrac{s_{AB}}{5}\)
\(s_{AB}=v\cdot t'=\dfrac{15}{11}\cdot t'\Rightarrow t'=\dfrac{11\cdot s_{AB}}{15}\)
Vì trễ hơn so với dự định \(\dfrac{1}{3}\left(h\right)\)(tức là 20 phút)
\(t'-t=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{11\cdot s_{AB}}{15}-\dfrac{s_{AB}}{5}=\dfrac{1}{3}\Leftrightarrow11\cdot s_{AB}-3\cdot s_{AB}=5\)
\(\Rightarrow s_{AB}=0,625\left(km\right)\)
Vậy thời gian dự định đi của người đó là \(t=\dfrac{s_{AB}}{v_1}=\dfrac{0,625}{5}=\dfrac{1}{8}\left(h\right)\)(tức là 7 phút 30 giây)