K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

ĐKXĐ: \(x\ge0\) Phương trình trên tương đương :

\(5\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)-2\left(x+\dfrac{1}{x}\right)-4=0\)

Đặt \(\sqrt{x}+\dfrac{1}{\sqrt{x}}=t\left(t\ge0\right)\)\(\Rightarrow t^2=x+\dfrac{1}{x}+2\)

Vậy phương trình trở thành:

\(5t-2\left(t^2-2\right)-4=0\)\(\Leftrightarrow2t^2-5t=0\)\(\Leftrightarrow t\left(2t-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=\dfrac{5}{2}\end{matrix}\right.\)

*Với \(t=0\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=0\Leftrightarrow x=-1\left(loai\right)\)

*Với \(t=\dfrac{5}{2}\)\(\Rightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=\dfrac{5}{2}\Leftrightarrow2x-5\sqrt{x}+2=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)Vậy phương trình có hau nghiệm phân biệt \(\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)

8 tháng 10 2017

Quy đồng rồi đặt ẩn \(\sqrt{x}=t\left(t\ge0\right)\) và giải pt bậc 4 như bình thường.

NV
21 tháng 7 2021

ĐKXĐ: \(\left[{}\begin{matrix}-1\le x< 0\\x\ge\sqrt{\dfrac{5}{2}}\end{matrix}\right.\)

\(x-\dfrac{4}{x}+\sqrt{2x-\dfrac{5}{x}}-\sqrt{x-\dfrac{1}{x}}=0\)

\(\Leftrightarrow x-\dfrac{4}{x}+\dfrac{x-\dfrac{4}{x}}{\sqrt{2x-\dfrac{5}{x}}+\sqrt{x-\dfrac{1}{x}}}=0\)

\(\Leftrightarrow\left(x-\dfrac{4}{x}\right)\left(1+\dfrac{1}{\sqrt{2x-\dfrac{5}{x}}+\sqrt{x-\dfrac{1}{x}}}\right)=0\)

\(\Leftrightarrow x-\dfrac{4}{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\left(loại\right)\end{matrix}\right.\)

17 tháng 12 2022

Đk: \(\left[{}\begin{matrix}-1\le x< 0\\\dfrac{\sqrt{10}}{2}\le x\le2\end{matrix}\right.\)

Phương trình đã cho trở thành:

\(\sqrt{2x-\dfrac{5}{x}}-\sqrt{x-\dfrac{1}{x}}+x-\dfrac{4}{x}=0\left(\cdot\right)\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{2x-\dfrac{5}{x}}\left(a>0\right)\\b=\sqrt{x-\dfrac{1}{x}}\left(b>0\right)\end{matrix}\right.\)

\(\left(\cdot\right)\Rightarrow a-b+a^2-b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a+b=-1\left(voli\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x-\dfrac{5}{x}}=\sqrt{x-\dfrac{1}{x}}\)

\(\Rightarrow2x-\dfrac{5}{x}=x-\dfrac{1}{x}\)

\(\Leftrightarrow x-\dfrac{4}{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm duy nhất \(x=2\)

 

NV
20 tháng 7 2021

b.

\(\left(x^2+1\right)^2=5-x\sqrt{2x^2+4x}\)

\(\Leftrightarrow x^4+2x^2-4+x\sqrt{2x^2+4x}=0\)

Đặt \(x\sqrt{2x^2+4x}=t\Rightarrow t^2=x^2\left(2x^2+4x\right)=2\left(x^4+2x^2\right)\)

Pt trở thành:

\(\dfrac{t^2}{2}-4+t=0\)

\(\Leftrightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4x}=2\left(x>0\right)\\x\sqrt{2x^2+4x}=-4\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-2=0\left(x>0\right)\\x^4+2x^2-8=0\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x\ne0\)

\(\Leftrightarrow\dfrac{9}{x^2}+2+\dfrac{2x}{\sqrt{2x^2+9}}=3\)

\(\Leftrightarrow\dfrac{2x^2+9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}=3\)

Đặt \(\dfrac{x}{\sqrt{2x^2+9}}=t\Rightarrow\dfrac{2x^2+9}{x^2}=\dfrac{1}{t^2}\)

Pt trở thành:

\(\dfrac{1}{t^2}+2t=3\)

\(\Rightarrow2t^3-3t^2+1=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(2t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{\sqrt{2x^2+9}}=1\left(x>0\right)\\\dfrac{x}{\sqrt{2x^2+9}}=-\dfrac{1}{2}\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=2x^2+9\left(vô-nghiệm\right)\\4x^2=2x^2+9\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\dfrac{3\sqrt{2}}{2}\)

Kiểm tra lại vế trái đề bài câu b

1 tháng 5 2021

a, ĐKXĐ : \(D=R\)

BPT \(\Leftrightarrow x^2+5x+4< 5\sqrt{x^2+5x+4+24}\)

Đặt \(x^2+5x+4=a\left(a\ge-\dfrac{9}{4}\right)\)

BPTTT : \(5\sqrt{a+24}>a\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+24\ge0\\a< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a\ge0\\25\left(a+24\right)>a^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\\left\{{}\begin{matrix}a^2-25a-600< 0\\a\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\0\le a< 40\end{matrix}\right.\)

\(\Leftrightarrow-24\le a< 40\)

- Thay lại a vào ta được : \(\left\{{}\begin{matrix}x^2+5x-36< 0\\x^2+5x+28\ge0\end{matrix}\right.\)

\(\Leftrightarrow-9< x< 4\)

Vậy ....

 

1 tháng 5 2021

b, ĐKXĐ : \(x>0\)

BĐT \(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< x+\dfrac{1}{4x}+1\)

- Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)

\(\Leftrightarrow a^2=x+\dfrac{1}{4x}+1\)

BPTTT : \(2a\le a^2\)

\(\Leftrightarrow\left[{}\begin{matrix}a\le0\\a\ge2\end{matrix}\right.\)

\(\Leftrightarrow a\ge2\)

\(\Leftrightarrow a^2\ge4\)

- Thay a vào lại BPT ta được : \(x+\dfrac{1}{4x}-3\ge0\)

\(\Leftrightarrow4x^2-12x+1\ge0\)

\(\Leftrightarrow x=(0;\dfrac{3-2\sqrt{2}}{2}]\cup[\dfrac{3+2\sqrt{2}}{2};+\infty)\)

Vậy ...

 

 

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x>0\)

\(\sqrt{x\left(x+3\right)}+2\sqrt{x+2}=2x+\sqrt{\dfrac{\left(x+2\right)\left(x+3\right)}{x}}\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-\sqrt{x+3}\right)+\sqrt{\dfrac{x+2}{x}}\left(\sqrt{x+3}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\dfrac{4x-x-3}{2\sqrt{x}+\sqrt{x+3}}\right)-\sqrt{\dfrac{x+2}{x}}\left(\dfrac{4x-x-3}{\sqrt{x+3}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-1\right)}{2\sqrt{x}+\sqrt{x+3}}\left(\sqrt{x}-\sqrt{\dfrac{x+2}{x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{x+2}{x}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x\ge-\dfrac{1}{2};x\ne1-\sqrt{2}\)

\(x+2+x\sqrt{2x+1}=x\sqrt{x+2}+\sqrt{\left(x+2\right)\left(2x+1\right)}\)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{2x+1}-\sqrt{x+2}\right)-x\left(\sqrt{2x+1}-\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{x+2}\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=\sqrt{x+2}\\\sqrt{x+2}=x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+2\\x^2-x-2=0\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x\ge0\)

\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-12x+5=0\)

\(\Leftrightarrow...\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)

\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)

\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)

\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)

\(\Leftrightarrow3x^2-4=0\)

\(\Leftrightarrow...\)