\(P=\left[\dfrac{\sqrt{n}\left(\sqrt{m}+\sqrt{n}\right)}{\sqrt{n}-\sqrt{m}}-\sqrt{m}\right]:\left(\dfrac{m}{\sqrt{m.n}+n}+\dfrac{n}{\sqrt{m.n}-m}-\dfrac{m+n}{\sqrt{m.n}}\right)\) với \(m>0;n>0;m\ne n\)
a. Rút gọn P
b. Tính giá trị của P biết m và n là 2 nghiệm của phương trình \(x^2-7x+4=0\)
c. Chứng minh: \(\dfrac{1}{P}< \dfrac{1}{\sqrt{m+n}}\)