K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

\(x^2-2xy+y^2+y^2+4y+4=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)

\(\left\{{}\begin{matrix}x=y\\y=-2\end{matrix}\right.\)

Vậy : x+y=-4

DD
6 tháng 7 2021

\(x^2-2xy+2y^2+5z^2+4yz-4z+4=0\)

\(\Leftrightarrow x^2-2xy+y^2+y^2+4yz+4z^2+z^2-4z+4=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+2z\right)^2+\left(z-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y+2z=0\\z-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=-4\\z=2\end{cases}}\)

13 tháng 7 2017

\(x^2+2y^2-2xy+4y+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y+2=0\end{cases}}\Leftrightarrow x=y=-2\)

Vậy \(x+y=-2-2=-4\)

27 tháng 6 2017

\(x^2+2y^2-2xy+4y+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)

Dễ thấy: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2\ge0\)

Xảy ra khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\)

11 tháng 7 2016

chiu

j

2 tháng 10 2020

x2 + 2y2 + 2xy - 6x - 2y + 13 = 0

<=> ( x2 + 2xy + y2 - 6x - 6y + 9 ) + ( y2 + 4y + 4 ) = 0

<=> [ ( x2 + 2xy + y2 ) - ( 6x + 6y ) + 9 ] + ( y + 2 )2 = 0

<=> [ ( x + y )2 - 2( x + y ).3 + 32 ] + ( y + 2 )2 = 0

<=> ( x + y - 3 )2 + ( y + 2 )2 = 0

Ta có : \(\hept{\begin{cases}\left(x+y-3\right)^2\\\left(y+2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x+y-3\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

Dấu "=" xảy ra <=> x = 5 ; y = -2

Thế x = 5 ; y = -2 vào A ta được :

\(A=\frac{5^2-7\cdot5\cdot\left(-2\right)+52}{5-\left(-2\right)}=\frac{25+70+52}{7}=\frac{147}{7}=21\)

25 tháng 7 2017

Đặt \(xy-12x+15y\)là (*)

Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)

Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)

Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)

Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)

\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)

\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)

Với \(x=3;y=2\)thay vào (*)  ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)

Với \(x=5;y=3\)thay vào (*)  ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)

Vậy .....

17 tháng 4 2018

2314654564

4 tháng 8 2017

\(x^2+y^2+4=2xy+4x+4y\)

\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)

Xét phương trình theo nghiệm x.

\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)

\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)

Vì x, y nguyên dương nên 

\(\Rightarrow\sqrt{2y}=a\)

\(\Rightarrow y=2n^2\)

\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)

Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.

4 tháng 8 2017

\(x^2+y^2+4=2xy+4x+4y\)

<=> \(\left(x^2-4x+4\right)+y^2-2y\left(x-2\right)=8y\)

<=> \(\left(x-y-2\right)^2=8y\)

<=> \(\left(\frac{x-y-2}{4}\right)^2=\frac{y}{2}\)

=> \(\frac{y}{2}\)là số chính phương

CMTT x/2 là số chính phương

11 tháng 12 2017

x2+2y2+2xy-4y+4=0

(x2+2xy+y2)+ (y2-4y+4) = 0

(x+y)2 + (y-2)2 = 0

Với mọi x, y ta luôn có

(x+y)2 >= 0

(y-2)2 >= 0 

do đó (x+y)2 + (y-2)2 >= 0

Dấu = xảy ra khi

x+y=0 và y-2=0

=> x=-2 và y = 2

Thay vào B rồi tính ra B= -4

25 tháng 9 2019

Ta có:

\(x^2+2y^2+2xy-4y+4=0\)

\(\left(x^2+2xy+y^2\right)+\left(y^2-4y+4\right)=0\)

\(\left(x+y\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x+y\right)^2+\left(y-2\right)^2\ge0\)vs mọi x, y

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)

Thay x= -2, y=2 vào biểu thức B, ta đc:

\(B=\left(4+4+48\right)\div\left(-2-2\right)\)

\(B=56\div\left(-4\right)=-8\)

Vậy B= -8 tại x=-2, y=2