K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

\(a,x^2-2x+9\\ =\left(x-1\right)^2+8\ge8\)

Để \(\left(x-1\right)^2+8=8\) thì

\(\left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)

Vậy...

\(b,x^2-3x+1=\left(x-\dfrac{3}{2}\right)^2-1.25\ge-1,25\)

Để \(\left(x-\dfrac{3}{2}\right)^2-1,25=-1,25\) thì:

............

=>\(x=\dfrac{3}{2}\)

Các câu sau tương tự

áp dụng công thức naỳ vào lm nhé :))

\(ax^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2+\dfrac{4ac-b^2}{4a}\ge\dfrac{4ac-b^2}{4a}\)

điều kiện là a khác 0

đẳng thức xảy ra khi \(x=-\dfrac{b}{2a}\)

mẫu câu a nhé =))

\(x^2-3x+1=\left(x+\dfrac{-3}{2.1}\right)^2+\dfrac{4.1.1-\left(-3\right)^2}{4.1}\\ =\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\)

đẳng thức xảy ra khi \(x=-\left(-\dfrac{3}{2}\right)=\dfrac{3}{2}\)

vậy GTNN của bt = -5/4 tại x=3/2

• bạn muốn kiểm tra lại kq làm đúng hay ko thì dùng máy tính bấm như này nhé (mt loại fx 500 trở lên nha )

+ đối vs máy casio:

MODE -> 5 -> 3 -> hiện ra cái bảng -> bấm hệ số a,b,c vào -> enter(dấu =)

kq thứ nhất vs thứ 2 là hai nghiệm của pt

bấm đến dấu = thứ 3 là gt của x để bt có GTNN( or GTLN) (nó hiện là X- Value Minium)

bấm dấu = lần nữa thì có GTNN nhé (nó hiện là Y- Value Minium)

VD câu a nhé :))

MODE ->5->3->1->-3->1-> = -> = -> 3/2 -> -5/4

vậy GTNN là -5/4 tại x=3/2

+ đối vs máy vinacal :

SHIFT -> 6 -> hiện ra cái bảng -> cx điền hệ số a,b,c vào -> dấu = đầu nó cho gt của x để bt đạt GTNN ( or GTLN) -> dấu = tiếp theo nó hiện GTNN (or GTLN) của bt đó

máy vinacal thì đơn giản hơn nhiều nhé :))

p/s: ai đọc thì đọc, ko đọc thì thôi chứ đừng cho gạch đá nha :))

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

20 tháng 7 2021

a) \(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)\(min_A=1\)

b) \(B=3x^2+x-2=3\left(x^2+\dfrac{1}{3}x-\dfrac{2}{3}\right)=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}-\dfrac{25}{36}\right)=3\left(x+\dfrac{1}{6}\right)^2-\dfrac{25}{12}\ge\dfrac{-25}{12}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{6}\)\(min_B=\dfrac{-25}{12}\)

c) \(C=\dfrac{4}{x^2}-\dfrac{3}{x}-1=\left(\dfrac{4}{x^2}-\dfrac{3}{x}+\dfrac{9}{16}\right)-\dfrac{25}{16}=\left(\dfrac{2}{x}+\dfrac{2}{3}\right)^2-\dfrac{25}{16}\ge\dfrac{-25}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-3\)\(min_C=\dfrac{-25}{16}\)

d) \(D=x^2+y^2-x+3y+7=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{9}{2}=\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)\(min_D=\dfrac{9}{2}\)

23 tháng 10 2016

bn ko bik lm hay sao, hay là bn chỉ đăng đề lên thôi

2 tháng 11 2016

sao nhìu... z p , đăq từq câu 1 thôy nha p

20 tháng 10 2016

Ôi trời sao lắm thế ít thôi bạn nên tách ra mà bạn cần gấp lắm à

20 tháng 10 2016

đúng rồi pn. giúp mik đc bài nào cũng đc

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)