Cho a,b,c khac 0 va \(\text{a}^2=bc\)
CM \(\dfrac{\text{a}^2+c}{b^2+\text{a}^2}=\dfrac{c}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow ab+bc+ca=0\)
\(a+b+c=\sqrt{2019}\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=2019\)
\(\Rightarrow a^2+b^2+c^2=2019\) ( vì \(ab+bc+ca=0\))
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\\ A=a^2+b^2+c^2\\ \Leftrightarrow A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\\ \Leftrightarrow A=\left(\sqrt{2019}\right)^2-2\cdot0=2019\)
+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)1) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (1)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
2) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)
Ta có: \(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (2)
Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Theo bđt cauchy schwarz dạng engel
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+c}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Dấu ''='' xảy ra khi a = b = c
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2016}\)
\(\Rightarrow\dfrac{bc+ac+bc}{abc}=\dfrac{1}{2016}\)
\(\Rightarrow\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc=abc\)
\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a=-b\) hay \(b=-c\) hay \(c=-a\)
-Vậy trong ba số a,b,c tồn tại 2 số đối nhau.
Theo bất đẳng thức tam giác
\(\Rightarrow\left\{\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\)
Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)
\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{a+c-b}\ge\dfrac{2}{a}\end{matrix}\right.\)
Cộng theo từng vế
\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( đpcm )
nhân cả vế với abc ta có điều cần chứng minh
\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)
VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)
=>(đpcm)
mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)
chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé
Bài này trong đề nào đó mới đây:
Đặt \(\dfrac{a+b}{a-b}=x;\dfrac{b+c}{b-c}=y;\dfrac{c+a}{c-a}=z\).
Ta có: \(2P=\dfrac{\left(a-b\right)^2+\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(b-c\right)^2+\left(b+c\right)^2}{\left(b-c\right)^2}+\dfrac{\left(c-a\right)^2+\left(c+a\right)^2}{\left(c-a\right)^2}=3+x^2+y^2+z^2=3+\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\),
Mặt khác dễ dàng chứng minh được: \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\Leftrightarrow xy+yz+zx=-1\).
Từ đó \(2P=\left(x+y+z\right)^2+5\ge5\Leftrightarrow P\ge\dfrac{5}{2}\).
Bài này là bất đẳng thức nên mình không tìm điểm rơi.
vi a mu 2=bc nen