Chứng tỏ rằng \(2001^{2001}-1997^{1997}\) chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lập luận văn nói ta sẽ có:
\(=2001^{2001}-1997^{1996}\)
\(=\left(....1\right)-\left(....1\right)\)(Vì chữ số tận cùng là 1 nên lũy thừa lên ko thay đổi,tận cùng là 7 lũy thừa 4n tận cùng là 1 mà 1996 chia hết cho 4 nên ta viết được biểu thức trên)
\(=\left(...0\right)\)chia hết cho 10.
Chúc em học tốt^^
Ta có : 20012001-19971996=…12001-…71996=…1-(…74)499=…1-…1=…0
Một số có tận cùng là 0 thì chia hết cho 10
20012001-19971996 chi hết cho 10(đpcm)
k và kết bạn với mình nha
Viết Đề bài thứ nhất
= 9999931996.9999933-5555571996-555557
=9999934.499.9999933-5555574.499.555557
=....1*...7-...1*555557
=....7-...7
=....0 chia hết cho 5
Ta có: 19952000có chữ số tận cùng là 5(số có cs tận cùng là 5 mũ lên bao nhiêu cũng có chữ số tận cùng là 5)
19962001có chữ số tận cùng là 6 (số có cs tận cùng là 6 mũ lên bao nhiêu cũng có chữ số tận cùng là 6)
19972002= 19972000.19972= (19974)500 x ...9 = ...1500 x ,,,9 = ...9
Suy ra: 19952000+19962001+19972002= ...5 + ...6 + ...9 = ...0
Vì có chữ số tận cùng là 0 nên nó chia hết cho 5
Bạn muốn biết có chia hết cho mười không thì ban phải quan tâm đến số cuối cùng , nếu nó là 0 thì chia hết cho 10
Số cuối cùng của \(^{17^{1997}}\):
\(17^{1997}\)= \(17^4\)x \(17^{1993}\)
\(17^4\) có số tận cùng là 1
Vì số cuối là 1 nên số cuối của lũy thừa này bằng 1
Số cuối cùng của \(24^{1996}\)
Cơ số có số cuối là 4
\(4^1\)=4
\(4^2\)=16
\(4^3\)=64
\(4^4\)=256
Vậy ta có thể suy ra nếu 4 có số mũ lẻ thì số tận cùng là 4
Nếu mũ chẳn thì số tận cùng là 6
\(24^{1996}\) có số mũ là số chẵn nên chữ số tận cùng la 6
Số tận cùng của \(33^{2001}\)
\(3^3\)số cuối la 7
\(3^7\)số cuối là 7
\(3^{11}\)số cuối là 7
Từ \(3^3\)cứ cách đều hàng mũ cho đến mũ 2001 thì số cuối la 7
Bài toán trên ta chỉ cần rút cacas lũy thừa thành số mũ của nó
Ta có : 1 + 6 -7 = 0
Vì nếu có số 0 cuối cùng thì có thể chia hết cho 10