tim x thuoc N
a,\(21x-1⋮11\)
b,\(5x+1⋮7\) va x la STN lon nhat co 3 chu so
c,\(3x-2⋮11\) va \(100< x< 2017\)
d,\(5⋮\left(x-3\right)\)
e,\(\left(3x+2\right)⋮\left(x+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 1 : 7 dư 1 và 5x + 1 \(⋮\) 7 nên 5x : 7 dư 6
Vì x là số tự nhiên bé nhất có 3 chữ số khi thay vào 5x thì 5x : 7 dư 6 nên x = 102
Vậy, x = 102
a, \(\Rightarrow10x-4+6x=6+15-9x\Leftrightarrow7x=25\Leftrightarrow x=\dfrac{25}{7}\)
b, \(\Rightarrow2\left(3x^2+5x-2\right)-6x^2-3=33\Leftrightarrow10x-7=33\Leftrightarrow x=4\)
c, \(\Rightarrow12x-10x-4=21-9x\Leftrightarrow11x=25\Leftrightarrow x=\dfrac{25}{11}\)
d, \(\Rightarrow3x-3+2x-2-x+1=12\Leftrightarrow4x=16\Leftrightarrow x=4\)
a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3+2x^2-x=5x\left(2-x\right)-11\left(x+2\right)\)
=>-x^2+2x-1=10x-5x^2-11x-22
=>-x^2+2x-1=-5x^2-x-22
=>4x^2+3x+21=0
=>PTVN
b: \(\Leftrightarrow\left(x+10\right)\left(x+4\right)+3\left(x+4\right)\left(x-2\right)=4\left(x+10\right)\left(x-2\right)\)
=>x^2+14x+40+3(x^2+2x-8)=4(x^2+8x-20)
=>x^2+14x+40+3x^2+6x-24=4x^2+32x-80
=>20x+16=32x-80
=>-12x=-96
=>x=8
c: \(\Leftrightarrow6\left(x-3\right)+7\left(x-5\right)=13x+4\)
=>6x-18+7x-35=13x+4
=>-53=4(loại)
d: =>3(2x-1)-5(x-2)=3(x+7)
=>6x-3-5x+10=3x+21
=>3x+21=x+7
=>x=-7
e: =>x^3-6x^2+12x-8-x^3-3x^2-3x-1=-9x^2+1
=>-9x^2+9x-9=-9x^2+1
=>9x=10
=>x=10/9
a) Ta có: \(2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)
b) Ta có: \(2x^3+6x^2=x^2+3x\)
\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)
\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)
c) Ta có: \(x^2+\left(x+2\right)\left(11x-7\right)=4\)
\(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)
\(\Leftrightarrow12x^2+15x-18=0\)
\(\Leftrightarrow12x^2+24x-9x-18=0\)
\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\12x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{-2;\dfrac{3}{4}\right\}\)
a) \(\left(3x-2\right)^2-\left(3x-5\right)\left(3x+2\right)=11\)
\(\Leftrightarrow\left(9x^2-12x+4\right)-\left(9x^2+6x-15x-10\right)=11\)
\(\Leftrightarrow9x^2-12x+4-9x^2-6x+15x+10=11\)
\(\Leftrightarrow-3x+3=0\)
\(\Leftrightarrow-3x=-3\)
\(\Leftrightarrow x=1\)
Vậy \(S=\left\{1\right\}\)
b) \(\left(4x-3\right)^2-\left(4x-5\right)\left(4x+5\right)=32\)
\(\Leftrightarrow\left(16x^2-24x+9\right)-\left(16x^2-25\right)=32\)
\(\Leftrightarrow16x^2-24x+9-16x^2+25=32\)
\(\Leftrightarrow-24x+2=0\)
\(\Leftrightarrow-24x=-2\)
\(\Leftrightarrow x=\dfrac{1}{12}\)
Vậy \(S=\left\{\dfrac{1}{12}\right\}\)
c) \(\left(5x-2\right)^2-\left(5x+3\right)\left(5x-5\right)=1\)
\(\Leftrightarrow\left(25x^2-20x+4\right)-\left(25x^2-25x+15x-15\right)=1\)
\(\Leftrightarrow25x^2-20x+4-25x^2+25x-15x+15=1\)
\(\Leftrightarrow-10x+18=0\)
\(\Leftrightarrow-10x=-18\)
\(\Leftrightarrow x=\dfrac{9}{5}\)
Vậy \(S=\left\{\dfrac{9}{5}\right\}\)
d) \(\left(x-4\right)^2-\left(x-7\right)\left(2x-3\right)=5-x^2\)
\(\Leftrightarrow\left(x^2-8x+16\right)-\left(2x^2-3x-14x+21\right)=5-x^2\)
\(\Leftrightarrow x^2-8x+16-2x^2+3x+14x-21=5-x^2\)
\(\Leftrightarrow x^2-8x+16-2x^2+3x+14x-21-5+x^2=0\)
\(\Leftrightarrow9x-10=0\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\dfrac{10}{9}\)
Vậy \(S=\left\{\dfrac{10}{9}\right\}\)
Cho mk hỏi vs ! Câu a bn rút gọn hay bn lm kiểu j mak tự nhiên 11 lại lôi đâu ra số 0 vậy ? Gt hộ mk vs, mk vẫn chưa hiểu cách bn lm ở câu a cho lắm !
e (3x+2)\(⋮\) (x+1)
vì (x+1)\(⋮\) (x+1)
=> (3x+3)\(⋮\) (x+1)
=> (3x+2)-(3x+3)\(⋮\) (x+1)
=>(3x+2-3x-3)\(⋮\) (x+1)
=> -1\(⋮\) (x+1)
=> (x+1)\(\in\) Ư(-1)={-1;1}
ta có bảng sau
vậy x=0