K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay \(x=\sqrt{3};y=-2\) vào hàm số, ta được:

\(\sqrt{3}\left(m-1\right)+2=-2\)

\(\Leftrightarrow\sqrt{3}\left(m-1\right)=-4\)

\(\Leftrightarrow m-1=-\dfrac{4\sqrt{3}}{3}\)

hay \(m=\dfrac{-4\sqrt{3}+3}{3}\)

Vậy: Hàm số có dạng là: \(y=-4\sqrt{3}x+2\)

b: Vì \(a=-4\sqrt{3}< 0\)

nên hàm số nghịch biến trên R

Bài 2:

a: Thay a=-3 và y=18 vào (d), ta được:

-3a-3=18

=>-3a=21

=>a=-7

b: Vì d có hệ số góc bằng -3 nên m+1=-3

=>m=-4

Thay x=1 và y=-1 vào y=-3x-n, ta được:

-3*1-n=-1

=>n+4=1

=>n=-3

a: Để hàm số trên là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m\ge0\\m\ne4\end{matrix}\right.\)

b: Để hàm số đồng biến thì \(\sqrt{m}-2>0\)

hay m>4

giúp mik câu ms đk ạ

8 tháng 2 2021

1) - Xét phương trình hoành độ giao điểm : \(x^2=x+m\)

\(\Leftrightarrow x^2-x-m=0\) ( I )

Có : \(\Delta=b^2-4ac=1-4\left(-m\right)=4m+1\)

- Để 2 hàm số cắt nhau tại hai điểm phân biệt

<=> PT ( I ) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow m>-\dfrac{1}{4}\)

2) Ta có : \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=3\sqrt{2}\)

\(\Leftrightarrow\left(x_1-x_2\right)^2+\left(x_1+m-x_2-m\right)^2=18\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1-x_2=3\\x_1-x_2=-3\end{matrix}\right.\)

Lại có : Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-m\end{matrix}\right.\)

TH1 : \(x_1-x_2=3\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-1\end{matrix}\right.\)

\(\Rightarrow-m=-2\)

\(\Rightarrow m=2\)

TH2 : \(x_1-x_2=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)

\(\Rightarrow-m=-2\)

\(\Rightarrow m=2\)

Vậy m = 2 thỏa mãn yêu cầu đề bài .

5 tháng 5 2021

theo tôi bạn có thể tách (x1-x2)=(x1+x2)2-4x1x2 cho nhanh

 

1 tháng 1 2022

a,để đồ thị hàm số là hai đường thẳng song song thì\(\left\{{}\begin{matrix}m+1=2m-3\\3\ne-2\end{matrix}\right.\Leftrightarrow m=2\)

b,để đồ thị hàm số là hai dường thẳng cắt nhau thì \(m+1\ne2m-3\Leftrightarrow m\ne2\)

a: Để hai đường song song thì 2m-3=m+1

hay m=4

24 tháng 9 2023

a) \(y=\left(m+2\sqrt{m}+1\right)x-10\) là hàm số đồng biến khi: \(\left(m\ge0\right)\)

\(m+2\sqrt{m}+1>0\) 

\(\Leftrightarrow\left(\sqrt{m}+1\right)^2>0\) (luôn đúng) 

Nên hàm số này luôn là hàm số đồng biến với \(m\ge3\)

b) \(y=\left(\sqrt{m}-3\right)x+2\) là hàm số nghịch biến khi: \(\left(m\ge0\right)\) 

\(\sqrt{m}-3< 0\)

\(\Leftrightarrow\sqrt{m}< 3\)

\(\Leftrightarrow m< 9\) 

\(\Leftrightarrow0\le m< 9\) 

3 tháng 1 2021

a, \(A=5\sqrt{\dfrac{1}{1}}+\dfrac{5}{2}\sqrt{20}+\sqrt{80}=5+5\sqrt{5}+4\sqrt{5}=5+9\sqrt{5}\)

b, Vì \(\sqrt{2}-1>0\Rightarrow\) Hàm số đồng biến

c, Hai đường thẳng đã cho song song khi \(\left\{{}\begin{matrix}m^2+2=6\\m\ne2\end{matrix}\right.\Leftrightarrow m=-2\)

25 tháng 10 2021

a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)

b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)

c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)