Chứng minh rằng nếu a > b và ab > 0 thì 1/a < 1/b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)
Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)
b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)
Giả sử a<b, ta đặt b=a+k(k>0)
Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)
Chứng minh tương tự với a>b
vì ab>0 nên a và b cùng âm hoặc dương
+) a,b<0 mà a>b
=> 1/a<1/b
+) a,b>0 mà a>b
=> 1/a<1/b
Vậy....
minh choi poke dai chien
con bai minh chui
nho tk minh nhe
Quy đồng mẫu là ra thôi
1/a = (1xb)/(axb) = b/ab
1/b = (1xa)/(bxa) = a/ab
Ta có hai phân số trên có mẫu chung là ab, a>b nên b/ab<a/ab hay 1/a<1/b(đpcm)
# Len #
a) a/b=ad/bd
c/d=cb/db
mà a/b<c/d=>ad/bd<cb/bd=>ad<bc
b)ad<bc=>ad/bd<bc/bd=> a/b<c/d
\(ab>0\Leftrightarrow\frac{1}{ab}>0\)
\(\frac{1}{a}=\frac{1}{ab}b< \frac{1}{ab}a\)
Theo de ra \(a>b\Leftrightarrow\frac{1}{a}=\frac{1}{b}\)
an lam bao goi lam moi nguoi phai ngi dau dau