Chứng minh rằng (\(3^{2^{4n+1}}+2^{3^{4n+1}}+5\))\(⋮22\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Chứng minh chia hết cho 2:
Ta có: \(3^{2^{4n+1}}\) là số lẻ và \(5\)là số lẻ nên
\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮2\left(1\right)\)
Chứng minh chia hết cho 11: (dùng \(\exists\)làm ký hiệu đồng dư)
Theo Fecma vì 11 là số nguyên tố nên
\(\Rightarrow3^{11-1}=3^{10}\exists1\left(mod11\right)\left(2\right)\)
Ta lại có: \(2^{4n+1}=2.16^n\exists2\left(mod10\right)\)
\(\Rightarrow2^{4n+1}=10k+2\)
Kết hợp với (2) ta được
\(\Rightarrow3^{4n+1}=3^{10k+2}=9.3^{10k}\exists9\left(mod11\right)\left(3\right)\)
Tương tự ta có:
\(\Rightarrow2^{11-1}=2^{10}\exists1\left(mod11\right)\left(4\right)\)
Ta lại có:
\(3^{4n+1}=3.81^n\exists3\left(mod10\right)\)
\(\Rightarrow3^{4n+1}=10l+3\)
Kết hợp với (4) ta được
\(2^{3^{4n+1}}=2^{10l+3}=8.2^{10l}\exists8\left(mol11\right)\left(5\right)\)
Từ (3) và (5) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)\exists\left(9+8+5\right)\exists22\exists0\left(mod11\right)\)
\(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮11\left(6\right)\)
Từ (1) và (6) \(\Rightarrow\left(3^{2^{4n+1}}+2^{3^{4n+1}}+5\right)⋮\left(2.11\right)=22\)
\(2^{3^{4n+1}}\) chia hết cho 2
\(3^{2^{4n+1}}\) ko chia hết cho 2 => nó là số lẻ
5 là số ko chia hết cho 2 => nó là số lẻ
mà số lẻ + lẻ = số chia hết cho 2
=> \(2^{3^{4n+1}}\)+ \(3^{2^{4n+1}}\) + 5 chia hết cho 2
=> HỢP SỐ
Ta có:
\(3^{4n+1}=3.81^n\text{≡}3\left(mod10\right)\)
\(\Rightarrow3^{4n+1}=10k+3\)
\(\Rightarrow2^{3^{4n+1}}=2^{10k+3}=8.1024^k\text{≡}8\left(mod11\right)\left(1\right)\)
Ta lại có:
\(2^{4n+1}=2.16^n\text{≡}2\left(mod5\right)\)
\(\Rightarrow2^{4n+1}=5a+2\)
\(\Rightarrow3^{2^{4n+1}}=3^{5a+2}=9.243^a\text{≡}9\left(mod11\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow3^{2^{4n+1}}+2^{3^{4n+1}}+5\text{≡}9+8+5\text{≡}22\text{≡}0\left(mod11\right)\)
a) Vì 24k+1 = 24k.2 = ....6k .2
Mà ...6k có tận cùng là 6 nên 24k+1 có tận cùng là 2
=> ....2 + 3 có tận cùng là 5 nên chia hết cho 5
đặt A=2^4n+1
=16^n.2
16^n đồng dư với 6 (mod 10)
=>16^n.2 đồng dư với 2.6=12=2(mod 10)
A chia 10 dư 2=10k+2(k thuộc N)
đặt B=3^4n+1
=81^n.3 đồng dư với 1.3=3 ( mod 10)
=>B chia 10 dư 3=10p+3(p thuộc N)
ta có 3^2^4n+1 + 3^3^4n+1 +5
=3^10k+2 + 3^10p+3 +5
3^10 đồng dư với 1 (mod 11)
=>3^10k+2 đồng dư với 1.3^2=9(mod 11)
=>3^10p+3 đồng dư với 1.3^3=27(mod 11)
5 đồng dư với 5(mod 11)
=> 3^2^4n+1 + 3^3^4n+1 +5 đồng dư với 9+27+5=41(mod 11)
=> đề sai! phải là 2^3^4n+1 mới đúng
Lời giải:
Gọi biểu thức trên là $A$
Dễ thấy:
$3^{2^{4n+1}}$ lẻ, $2^{3^{4n+1}}$ chẵn, $5$ lẻ với mọi $n$ tự nhiên
Do đó $A$ chẵn hay $A\vdots 2(*)$
Mặt khác:
$2^4\equiv 1\pmod 5\Rightarrow 2^{4n+1}\equiv 2\pmod 5$
$\Rightarrow 2^{4n+1}=5k+2$ với $k$ tự nhiên
$\Rightarrow 3^{2^{4n+1}}=3^{5k+2}=9.(3^5)^k\equiv 9.1^k\equiv 9\pmod {11}$
Và:
$3^4\equiv 1\pmod {10}\Rightarrow 3^{4n+1}\equiv 3\pmod {10}$
do đó $3^{4n+1}=10t+3$ với $t$ tự nhiên
$\Rightarrow 2^{3^{4n+1}}=2^{10t+3}=8.(2^{10})^t\equiv 8.1^t\equiv 8\pmod{11}$
Do đó:
$A\equiv 9+8+5=22\equiv 0\pmod {11}$
Vậy $A\vdots 11(**)$
Từ $(*); (**)\Rightarrow A\vdots 22$ (do $(2,11)=1$)