cho a,b,c > 0 :CMR
\(\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}>6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi biểu thức đã cho là $P$. Áp dụng BĐT Cauchy-Schwarz:
\(P+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{c+a-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)
\(=\frac{2(a+b+c)}{b+c-a}+\frac{\frac{9}{2}(a+b+c)}{c+a-b}+\frac{8(a+b+c)}{a+b-c}\)
\(=(a+b+c)\left(\frac{2}{b+c-a}+\frac{\frac{9}{2}}{c+a-b}+\frac{8}{a+b-c}\right)\)
\(\geq (a+b+c).\frac{(\sqrt{2}+\sqrt{\frac{9}{2}}+\sqrt{8})^2}{b+c-a+c+a-b+a+b-c}=\frac{81}{2}\)
\(\Rightarrow P\geq \frac{81}{2}-\frac{29}{2}=26\) (đpcm)
Nghe mấy tiền bối đồn là đề này nằm trong đề đại học năm nào đó. Tự tìm nhá
Đặt \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\)\(\left(x,y,z>0\right)\)\(\Rightarrow\left\{{}\begin{matrix}x+y=2c\\y+z=2a\\x+z=2b\end{matrix}\right.\)
Thì ta có: \(\dfrac{2\left(y+z\right)}{x}+\dfrac{9\left(x+z\right)}{2y}+\dfrac{8\left(x+y\right)}{z}\ge26\)
Áp dụng BĐT AM-GM ta có:
\(VT=\dfrac{2\left(y+z\right)}{x}+\dfrac{9\left(x+z\right)}{2y}+\dfrac{8\left(x+y\right)}{z}\)
\(=\dfrac{2y}{x}+\dfrac{2z}{x}+\dfrac{9x}{2y}+\dfrac{9z}{2y}+\dfrac{8x}{z}+\dfrac{8y}{z}\)
\(=\left(\dfrac{2y}{x}+\dfrac{9x}{2y}\right)+\left(\dfrac{2z}{x}+\dfrac{8x}{z}\right)+\left(\dfrac{9z}{2y}+\dfrac{8y}{z}\right)\)
\(\ge2\sqrt{\dfrac{2y}{x}\cdot\dfrac{9x}{2y}}+2\sqrt{\dfrac{2z}{x}\cdot\dfrac{8x}{z}}+2\sqrt{\dfrac{9z}{2y}\cdot\dfrac{8y}{z}}\)
\(\ge6+8+12=26=VP\)
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Lời giải:
Áp dụng BĐT Cauchy-Schwarz và AM-GM ta có:
\(\text{VT}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+abc(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+(ab+bc+ac)+\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ac}\)
\(\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+(ab+bc+ac)+\frac{(a+b+c)^2}{ab+bc+ac}\)
\(\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2\sqrt{(ab+bc+ac).\frac{(a+b+c)^2}{ab+bc+ac}}\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+2(a+b+c)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c+(a+b+c)\)
\(\geq 6\sqrt[6]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}.a.b.c}+(a+b+c)=6+a+b+c\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
đề có sai 1 chút nha bạn :
đề phải là \(a;b;c>0\) : \(CMR\) \(\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\ge6\) mới đúng
giải
đặt : \(P=\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\)
ta có : \(P=\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\)
\(P=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{9b}{a+c}+9\right)+\left(\dfrac{16c}{a+b}+16\right)-26\)
\(P=\left(\dfrac{a+b+c}{b+c}\right)+\left(\dfrac{9b+9a+9c}{a+c}\right)+\left(\dfrac{16c+16a+16b}{a+b}\right)-26\)\(P=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)-26\)
\(P=\dfrac{1}{2}\left(\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)-26\)
áp dụng bất đẳng thức Bunhiacopxki
ta có :
\(\left(\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)\ge\left(\sqrt{1}+\sqrt{9}+\sqrt{16}\right)^2\)
\(\Leftrightarrow\left(\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)\ge64\)
\(\Leftrightarrow\) \(P=\dfrac{1}{2}\left(\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)-26\ge\dfrac{1}{2}.64-26\)
\(\Leftrightarrow P\ge6\)vậy \(P=\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\ge6\) (đpcm)
dấu "=" xảy ra khi \(b+c=\dfrac{a+c}{9}=\dfrac{a+b}{16}\)
Cảm ơn bạn nhiều...