Cho \(\left\{{}\begin{matrix}x,y,z>0\\x>max\left\{y,z\right\}\end{matrix}\right.\). Tìm Min của:
\(M=\dfrac{x}{y}+2\sqrt{1+\dfrac{y}{z}}+3\sqrt[3]{1+\dfrac{z}{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM-GM có:
\(1+\dfrac{y}{z}\ge2\sqrt{\dfrac{y}{z}};1+\dfrac{z}{x}\ge2\sqrt{\dfrac{z}{x}}\)
Dễ dàng suy ra: \(M\ge\dfrac{x}{y}+2\sqrt{2}\cdot\sqrt[4]{\dfrac{y}{z}}+3\sqrt[3]{2}\cdot\sqrt[6]{\dfrac{z}{x}}=\dfrac{1}{\sqrt{2}}\left(\dfrac{x}{y}+4\sqrt[4]{\dfrac{y}{z}}+6\sqrt[6]{\dfrac{z}{x}}\right)+\left(1-\dfrac{1}{\sqrt{2}}\right)\cdot\dfrac{x}{y}+\left(3\sqrt[3]{2}-3\sqrt{2}\right)\cdot\sqrt[6]{\dfrac{z}{x}}\)
Theo AM-GM có: \(\dfrac{1}{\sqrt{2}}\left(\dfrac{x}{y}+4\sqrt[4]{\dfrac{y}{z}}+6\sqrt[6]{\dfrac{z}{x}}\right)\ge\dfrac{1}{2}\cdot11\sqrt[11]{\dfrac{x}{y}\cdot\dfrac{y}{z}\cdot\dfrac{z}{x}}=\dfrac{11}{\sqrt{2}}\) (1)
Theo đề: \(x\ge max\left\{y,z\right\}\) ta có: \(\left\{{}\begin{matrix}\dfrac{x}{y}\ge1\\\dfrac{z}{x}\le1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\left(1-\dfrac{1}{\sqrt{2}}\right)\cdot\dfrac{x}{y}\ge1-\dfrac{1}{\sqrt{2}}\left(2\right)\\\left(3\sqrt[3]{2}-3\sqrt{2}\right)\cdot\sqrt[6]{\dfrac{z}{x}}\ge3\sqrt[3]{2}-3\sqrt{2}\left(3\right)\end{matrix}\right.\)
Cộng theo vế bđt (1), (2) ,(3) có:\(A\ge\dfrac{11}{\sqrt{2}}+1-\dfrac{1}{\sqrt{2}}+3\sqrt[3]{2}-3\sqrt{2}=1+2\sqrt{2}+3\sqrt[3]{2}\)
Xảy ra khi \(x=y=z\)
Lâu lâu k đi khủng bố tinh thần :3
Ta đi cm \(1+2\sqrt{2}+3\sqrt[3]{2}\) là Min nhé
\(M'(x)=\dfrac{1}{y}+\dfrac{-\dfrac{z}{x^2}}{\sqrt[3]{\left(1+\dfrac{z}{x}\right)^2}}=\dfrac{x^2\sqrt[3]{\left(1+\dfrac{z}{x}\right)^2}-yz}{y\sqrt[3]{\left(1+\dfrac{z}{x}\right)^2}}\ge0\)
Vì vậy ta cần xét 2 trường hợp
*)\(y\ge z;x=y\). Đặt \(\dfrac{y}{z}=t\). Khi đó \(t\ge 1\) và cần cm \(f(t)\ge 0\)
\(f(t)=2\sqrt{1+t}+3\sqrt[3]{1+\dfrac{1}{t}}-2\sqrt{2}-3\sqrt[3]{2}\)
Thật vậy \(f'(t)=\dfrac{1}{\sqrt{1+t}}+\dfrac{-\dfrac{1}{t^2}}{\sqrt[3]{1+\dfrac{1}{t}}}=\dfrac{\sqrt[3]{t^4(t+1)^2}-\sqrt{1+t}}{\sqrt{1+t}\sqrt[3]{t^4(t+1)^2}}>0\)
\(\Rightarrow f(t)\ge f(1)=0\)
*)\(z\ge y ;x=z\). Khi đó \(t\ge 1\) và ta cm \(g(t)\ge 0\)
\(g(t)=t+2\sqrt{1+\dfrac{1}{t}}-1-2\sqrt{2}\)
Và \(g'(t)=1+\dfrac{-\dfrac{1}{t^2}}{\sqrt{1+\dfrac{1}{t}}}=\dfrac{\sqrt{t^3(t+1)}-1}{\sqrt{t^3(t+1)}}>0\)
Tức là \(g(t)\geq g(1)=0\)
1. Với mọi số thực x;y;z ta có:
\(x^2+y^2+z^2+\dfrac{1}{2}\left(x^2+1\right)+\dfrac{1}{2}\left(y^2+1\right)+\dfrac{1}{2}\left(z^2+1\right)\ge xy+yz+zx+x+y+z\)
\(\Leftrightarrow\dfrac{3}{2}P+\dfrac{3}{2}\ge6\)
\(\Rightarrow P\ge3\)
\(P_{min}=3\) khi \(x=y=z=1\)
1.1
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}=a>0\\\dfrac{1}{\sqrt{y}}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+\sqrt{2-b^2}=2\\b+\sqrt{2-a^2}=2\end{matrix}\right.\)
\(\Rightarrow a-b+\sqrt{2-b^2}-\sqrt{2-a^2}=0\)
\(\Leftrightarrow a-b+\dfrac{\left(a-b\right)\left(a+b\right)}{\sqrt{2-b^2}+\sqrt{2-a^2}}=0\)
\(\Leftrightarrow a=b\Leftrightarrow x=y\)
Thay vào pt đầu:
\(a+\sqrt{2-a^2}=2\Rightarrow\sqrt{2-a^2}=2-a\) (\(a\le2\))
\(\Leftrightarrow2-a^2=4-4a+a^2\Leftrightarrow2a^2-4a+2=0\)
\(\Rightarrow a=1\Rightarrow x=y=1\)
2.
\(\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^2-xy+y^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+3xy+3y^2=21\\7x^2-7xy+7y^2=21\end{matrix}\right.\)
\(\Rightarrow4x^2-10xy+4y^2=0\)
\(\Leftrightarrow2\left(2x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=\dfrac{1}{2}x\end{matrix}\right.\)
Thế vào pt đầu
...
\(\dfrac{\sqrt{2}}{\sqrt{2x}.\sqrt{y+z}}\ge\dfrac{\sqrt{2}}{\dfrac{2x+y+z}{2}}=\dfrac{2\sqrt{2}}{2x+y+z}\)
\(\Rightarrow A\ge\sum\dfrac{2\sqrt{2}}{2x+y+z}=2\sqrt{2}\sum\dfrac{1}{2x+y+z}\ge2\sqrt{2}.\dfrac{9}{4\left(x+y+z\right)}=\dfrac{18\sqrt{2}}{4.18\sqrt{2}}=\dfrac{1}{4}\)
\(\Rightarrow A_{min}=\dfrac{1}{4}\) khi \(x=y=z=6\sqrt{2}\)
\(A\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)
\(A_{min}=\dfrac{1}{2}\) khi \(x=y=z=\dfrac{1}{3}\)
Đề bài sai, phản ví dụ: \(x=y=\dfrac{1}{16};z=256\)
Nói chung, chỉ cần 2 biến đủ nhỏ là BĐT này đều sai
Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:
\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)
\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)
Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)
Cộng vế:
\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)
\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)
Sau vài phút cố gắng thì khẳng định đề bài của em bị sai
mini của mày chịch nhau à hả cu
phắn =="