K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

\(4a^2+4b^2+4c^2+4d^2-4ab-4ac-4ad\) \(\ge 0\)

\(\leftrightarrow\) \(a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2\) \(\ge 0\)

\(\leftrightarrow\) \(\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+a^2\) \(\ge 0\) (luôn đúng)

1 tháng 10 2017

Ta có : 4( b² + c² + d² + e²) ≥( b + c + d +e )² ( dễ lắm, bạn tự cm lấy nhé, ) 
=> ( b² + c² + d² + e²) ≥ ( b + c + d +e )²/4 (*) 
G/s bdt đề bài đúng, ta có: 
<=> a² + b²+ c² + d²+ e² - a(b + c + d +e) ≥ 0 
Lại có ( *) => ta có : a² + b²+ c² + d² + e² - a(b + c + d +e) ≥ a² + ( b + c + d +e )²/4 - a(b + c + d +e) 
<=> [ a - ( b + c+ d +e)/2]² => hiển nhiên đúng 
Vậy ta có dpcm. 
Với cách này ta cũng có thể chứng minh các bdt tương tự với 3 biến, 4 biến v.v.... 
Chúc bạn học giỏi, chào bạn!  

29 tháng 1 2019

Sửa đề: a,b,c,d>0

C/m: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(c+d\right)\)

Áp dụng BĐT AM-GM ta có:

\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2=\left[\frac{\left(a+c\right)+\left(b+d\right)}{2}\right]^2\ge\left[\frac{2.\sqrt{\left(a+c\right)\left(b+d\right)}}{2}\right]^2=\left(a+c\right)\left(b+d\right)\)

Dấu " = " xảy ra <=> a+c=b+d

AH
Akai Haruma
Giáo viên
1 tháng 10 2017

Lời giải:

\(a^2+b^2+c^2+d^2\geq a(b+c+d)\)

\(\Leftrightarrow 4a^2+4b^2+4c^2+4d^2\geq 4a(b+c+d)\)

\(\Leftrightarrow (a-2b)^2+(a-2c)^2+(a-2d)^2+a^2\geq 0\)

BĐT trên luôn đúng nên ta có đpcm.

Dấu bằng xảy ra khi \(0=a=2b=2c=2d\Leftrightarrow a=b=c=d=0\)

22 tháng 7 2018

Sorry, đề bài thiếu: a,b,c,d là số dương

11 tháng 2 2019

Câu b search google bđt Min-cốp-xki thẳng tiến

4 tháng 2 2019

Chị ơi!

NV
20 tháng 6 2019

a/ Bình phương 2 vế:

\(\frac{a+2\sqrt{ab}+b}{4}\le\frac{a+b}{2}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ Bình phương:

\(a^2+b^2+c^2+d^2+2\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(\Leftrightarrow\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge ac+bd\)

\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)