cho x,y,z>0 và \(x^2+y^2+z^2=3\). Chứng minh rằng
\(A=\sqrt{\dfrac{x^2}{x^2+y+z}}+\sqrt{\dfrac{y^2}{y^2+x+z}}+\sqrt{\dfrac{z^2}{z^2+x+y}}\le\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\\y^3+z^2\ge2\sqrt{y^3z^2}=2yz\sqrt{y}\\z^3+x^2\ge2\sqrt{z^3x^2}=2xz\sqrt{z}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2\sqrt{x}}{x^3+y^2}\le\dfrac{2\sqrt{x}}{2xy\sqrt{x}}=\dfrac{1}{xy}\\\dfrac{2\sqrt{y}}{y^3+z^2}\le\dfrac{2\sqrt{y}}{2yz\sqrt{y}}=\dfrac{1}{yz}\\\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{2\sqrt{z}}{2xz\sqrt{z}}=\dfrac{1}{xz}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\) ( 1 )
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2\sqrt{\dfrac{1}{x^2y^2}}=\dfrac{2}{xy}\\\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge2\sqrt{\dfrac{1}{y^2z^2}}=\dfrac{2}{yz}\\\dfrac{1}{z^2}+\dfrac{1}{x^2}\ge2\sqrt{\dfrac{1}{x^2z^2}}=\dfrac{2}{xz}\end{matrix}\right.\)
\(\Rightarrow2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\)
\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow VT\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x^3+y^2}+\dfrac{2\sqrt{y}}{y^3+z^2}+\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\) ( đpcm )
\(x+y+z=xyz\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\Rightarrow ab+bc+ca=1\)
Đặt vế trái là P, ta có:
\(P=\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\)
\(P=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(P=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)+\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)+\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)
Xài Bunhiacopxki thì bài này sẽ hơi dài:
Đặt vế trái là P
Ta có:
\(\left(\dfrac{1}{4}+4\right)\left(x^2+\dfrac{1}{x^2}\right)\ge\left(\dfrac{x}{2}+\dfrac{2}{x}\right)^2\)
\(\Leftrightarrow\dfrac{17}{4}\left(x^2+\dfrac{1}{x^2}\right)\ge\left(\dfrac{x}{2}+\dfrac{2}{x}\right)^2\)
\(\Rightarrow\sqrt{x^2+\dfrac{1}{x^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{x}{2}+\dfrac{2}{x}\right)\)
Tương tự:
\(\sqrt{y^2+\dfrac{1}{y^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{y}{2}+\dfrac{2}{y}\right)\) ; \(\sqrt{z^2+\dfrac{1}{z^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{z}{2}+\dfrac{2}{z}\right)\)
Cộng vế: \(P\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{x}{2}+\dfrac{y}{2}+\dfrac{z}{2}+\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}\right)\)
\(P\ge\dfrac{1}{\sqrt{17}}\left(x+y+z+4\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\right)\ge\dfrac{1}{\sqrt{17}}\left(x+y+z+\dfrac{36}{x+y+z}\right)\)
\(P\ge\dfrac{1}{\sqrt{17}}\left(x+y+z+\dfrac{9}{4\left(x+y+z\right)}+\dfrac{135}{4\left(x+y+z\right)}\right)\)
\(P\ge\dfrac{1}{\sqrt{17}}\left(2\sqrt{\dfrac{9\left(x+y+z\right)}{4\left(x+y+z\right)}}+\dfrac{135}{4.\dfrac{3}{2}}\right)=\dfrac{3}{2}\sqrt{17}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)
Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$Khi đó BĐT đã cho trở thành:$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$Mặt khác ta có:$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$
CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$Từ $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$
Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:
$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$
$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$
$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$
Khi đó BĐT đã cho trở thành:
$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$
Mặt khác ta có:
$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$
CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$
Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$
Từ $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$
Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$
theo bđt cauchy schwarz ta có
\(\left\{{}\begin{matrix}\dfrac{2\sqrt{x}}{x^3+y^2}\le\dfrac{2\sqrt{x}}{2\sqrt{x^3y^2}}=\dfrac{1}{xy}\\\dfrac{2\sqrt{y}}{y^3+z^2}\le\dfrac{2\sqrt{y}}{2\sqrt{y^3z^2}}=\dfrac{1}{yz}\\\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{2\sqrt{z}}{2\sqrt{z^3y^2}}=\dfrac{1}{zy}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\le\dfrac{\dfrac{1}{x^2}+\dfrac{1}{y^2}}{2}+\dfrac{\dfrac{1}{y^2}+\dfrac{1}{z^2}}{2}+\dfrac{\dfrac{1}{z^2}+\dfrac{1}{x^2}}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)\(\Rightarrow dpcm\)
Áp dụng BĐT AM-GM:
\(VT=\sum\dfrac{\sqrt{\left(x+y\right)^2-xy}}{4yz+1}\ge\sum\dfrac{\sqrt{\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2}}{\left(y+z\right)^2+1}=\sum\dfrac{\dfrac{\sqrt{3}}{2}\left(x+y\right)}{\left(y+z\right)^2+1}\)
Set \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\z+x=c\end{matrix}\right.\)thì giả thiết trở thành \(a+b+c=3\) và cần chứng minh \(\dfrac{\sqrt{3}}{2}.\sum\dfrac{a}{b^2+1}\ge\dfrac{3\sqrt{3}}{4}\)
\(\Leftrightarrow\sum\dfrac{a}{b^2+1}\ge\dfrac{3}{2}\)( đến đây quen thuộc rồi)
Ta có:\(\sum\dfrac{a}{b^2+1}=\sum a-\sum\dfrac{ab^2}{b^2+1}\ge3-\sum\dfrac{ab^2}{2b}\)(AM-GM)
\(VT\ge3-\sum\dfrac{ab}{2}\ge3-\dfrac{\dfrac{1}{3}\left(a+b+c\right)^2}{2}=\dfrac{3}{2}\)( AM-GM)
Vậy ta có đpcm.Dấu = xảy ra khi a=b=c=1 hay \(x=y=z=\dfrac{1}{2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\((x^2+y+z)(1+y+z)\geq (x+y+z)^2\Rightarrow x^2+y+z\geq \frac{(x+y+z)^2}{1+y+z}\)
\(\Rightarrow \sqrt{\frac{x^2}{x^2+y+z}}\leq \sqrt{\frac{x^2(1+y+z)}{(x+y+z)^2}}=\frac{x\sqrt{1+y+z}}{x+y+z}\)
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow A\leq \frac{x\sqrt{1+y+z}+y\sqrt{1+x+z}+z\sqrt{x+y+1}}{x+y+z}\)
Áp dụng BĐT Cauchy-Schwarz:
\((x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z)(xy+xz+x+yx+yz+y+zx+zy+z)\)
\((x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z)[2(xy+yz+xz)+x+y+z]\) (1)
Theo BĐT AM-GM:
\((x+y+z)^2\geq 3(xy+yz+xz)=(x^2+y^2+z^2)(xy+yz+xz)\geq (xy+yz+xz)^2\)
\(\Rightarrow x+y+z\geq xy+yz+xz\) (2)
Từ \((1),(2)\Rightarrow (x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z).3(x+y+z)=3(x+y+z)^2\)
\(\Leftrightarrow x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1}\leq \sqrt{3}(x+y+z)\)
\(\Rightarrow A\leq \frac{\sqrt{3}(x+y+z)}{x+y+z}=\sqrt{3}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\)