nhờ mọi người giải giúp với ah
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-23,8\cdot41,9-23,8\cdot67,2+23,8\cdot9,1\)
\(=-23,8\cdot\left(41,9+67,2-9,1\right)\)
\(=-23,8\cdot100\)
\(=-2380\)
\(\Rightarrow i=90^o-40^o=50^o\)
\(i=i'\Leftrightarrow i'=50^o\)
c,
Đầu tiên quay tia phản xạ 1 góc : \(50^o+50^o+40^o=140^o\) theo ngược chiều kim đồng hồ
\(\Rightarrow ihợpvớii':40^o\)
\(\Rightarrow i=40^o:2=20^o\)
\(i'=i\Leftrightarrow i'=20^o\)
Sau đó vẽ tia pháp tuyến NI , sao cho NI là phân giác của \(\widehat{SIR}\)
Vẽ gương vuông góc vs NI
\(a=90^o-20^o=70^o\)
\(\Rightarrow\) Gương phải quay 1 góc 70o
a) \(A=\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}=\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}}{\sqrt{y}}\)
b) \(B=\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}=\dfrac{\sqrt{a}\left(1+\sqrt{ab}\right)-\sqrt{b}\left(1+\sqrt{ab}\right)}{\left(\sqrt{ab}-1\right)\left(1+\sqrt{ab}\right)}=\dfrac{\left(1+\sqrt{ab}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}-1}=\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\)
c) \(C=\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}=\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}=1-\sqrt{x}+x\)
d) \(D=\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}-y=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
e) \(\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}+\dfrac{4-x}{2-\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}+\dfrac{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}{2-\sqrt{x}}=\sqrt{x}+2+2+\sqrt{x}=2\sqrt{x}+4\)
\(=\dfrac{1}{2}\left(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{10}{39}=\dfrac{5}{39}\)
$n_{NaCl} = C_M.V = 0,1.2,5 = 0,25(mol)$
$m_{NaCl} = n.M = 0,25.58,5 = 14,625(gam)$
Ta có: \(x^4-30x^2+31x-30=0\) \(\Rightarrow x^4+x-30x^2+30x-30=0\)
\(\Rightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\Rightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)
Xét \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(\Rightarrow x^2+x-30=0\Rightarrow x^2-5x+6x-30=0\)
\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\Rightarrow\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)
Vậy x=5 hoặc x = -6
\(B=\left(2017+0,17-3,48\right)\times\left(0,5\times\frac{1}{5}-\frac{3}{10}\right)\)
\(B=\left(2017,17-3,48\right)\times\left(0,1-\frac{3}{10}\right)\)
\(B=2013,69\times0,03\)
\(B=60,4107\)
Mình chỉ biết làm như thế thôi
\(\left(2017+0,17-3,48\right).\left(0,5.\frac{1}{5}-\frac{3}{10}\right)\)
\(=\left(2017+\frac{17}{100}-\frac{348}{100}\right).\left(\frac{5}{10}.\frac{1}{5}-\frac{3}{10}\right)\)
\(=\left(\frac{201700}{100}+\frac{17}{100}-\frac{348}{100}\right).\left(\frac{1}{10}-\frac{3}{10}\right)\)
\(=\frac{201369}{100}.\frac{-2}{10}\)
\(=-402,738\)
3. A = x3 - 64 - ( x3 - x2 + x - 1 ) = x3 - 64 - x3 + x2 - x + 1 = x2 - x - 63
B = x3 + 8 - ( x3 - 8 ) = x3 + 8 - x3 + 8 = 16
C = x3 - 3x2 + 3x - 1 - ( 4x2 - 1 ) = x3 - 3x2 + 3x - 1 - 4x2 + 1 = x3 - 7x2 + 3x
D = x( x2 - 25 ) - ( x3 + 1 ) = x3 - 25x - x3 - 1 = -25x - 1
4. a) x2 - 4x + 1 = 0 <=> ( x2 - 4x + 4 ) - 3 = 0 <=> ( x - 2 )2 - (√3)2 = 0
<=> ( x - 2 - √3 )( x - 2 + √3 ) = 0 <=> x = 2 ± √3
b) 9x2 - 6x - 8 = 0 <=> ( 9x2 - 6x + 1 ) - 9 = 0 <=> ( 3x - 1 )2 - 32 = 0
<=> ( 3x - 4 )( 3x + 2 ) = 0 <=> x = 4/3 hoặc x = -2/3
c) x3 - 3x2 + 3x + 7 = 0 <=> ( x3 - 3x2 + 3x - 1 ) + 8 = 0
<=> ( x - 1 )3 + 23 = 0 <=> ( x + 1 )( x2 - 4x + 7 ) = 0
<=> x + 1 = 0 <=> x = -1 ( vì x2 - 4x + 7 = ( x - 2 )2 + 3 > 0 )