cho các hàm số y=0.5x 3,y=6-x,y=mx có đồ thị lần lượt là các đường thẳng (d1),(d2) và (dentam).với những giá trị nào của tham số m thì đường thẳng (dentam)cắt đường thẳng (d1),(d2) lần lượt ở 2 điểm A và B sao cho A có hoành độ âm còn B có hoành độ dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có phương trình hoành độ giao điểm của d 1 v à d 2 : m x – 2 = 1 2 x + 1 ( * )
Để hai đường thẳng d 1 v à d 2 cắt nhau tại một điểm có hoành độ x = − 4 t h ì x = − 4 thỏa mãn phương trình (*)
Suy ra m . ( − 4 ) – 2 = 1 2 . ( − 4 ) + 1 ⇔ − 4 m – 2 = − 2 + 1 ⇔ − 4 m = 1 ⇔ m = 1 4
Đáp án cần chọn là: A
a:
b: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\3x-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=0\end{matrix}\right.\)
Vậy: A(1/3;0)
Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\-x+3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\-x=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=3\end{matrix}\right.\)
Vậy: B(3;0)
Tọa độ C là:
\(\left\{{}\begin{matrix}3x-1=-x+3\\y=3x-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x=4\\y=3x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\cdot1-1=2\end{matrix}\right.\)
Vậy: C(1;2)
c: Gọi \(\alpha\) là góc tạo bởi (d1) với trục Ox
\(tan\alpha=a=3\)
=>\(\alpha\simeq71^033'\)
d3//d1 => a=2 (b khác 1)
d3 cắt d2 tại điểm có tung độ bằng 2 Thay y=2 vào d2
=> 2=-x+4=> x=2 Thay y=2; x=2; a=2 vào d3
=> 2+2.2+b=> b=-6
b) Phương trình hoành độ giao điểm của (D1) và (d2) là:
-x+4=x-4
\(\Leftrightarrow-2x=-8\)
hay x=4
Thay x=4 vào (d1), ta được:
y=-4+4=0
Thay x=0 vào (d1), ta được:
\(y=-0+4=4\)
Thay x=0 vào (d2), ta được:
\(y=0-4=-4\)
Vậy: A(0;4); B(0;-4); C(4;0)