Thực hiện phép tính
/-3/ - /-5/ - /4/ + ( -21 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, 3/5 + -4/15 = \(\dfrac{9}{15}\)+ \(\dfrac{-4}{15}\)= \(\dfrac{5}{15}\)= \(\dfrac{1}{3}\)
2, -1/3 + 2/5 + 2/15= \(\dfrac{-5}{15}+\dfrac{6}{15}+\dfrac{2}{15}\)=\(\dfrac{3}{15}=\dfrac{1}{5}\)
3, -3/5 + 7/21 + -4/5 + 7/5= \(\dfrac{1}{3}\)
\(1.\dfrac{3}{5}+\dfrac{-4}{15}=\dfrac{9}{15}+\dfrac{-4}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
\(2.\dfrac{-1}{3}+\dfrac{2}{5}+\dfrac{2}{15}=\dfrac{-5}{15}+\dfrac{6}{15}+\dfrac{2}{15}=\dfrac{3}{15}=\dfrac{1}{5}\)
\(3.\dfrac{-3}{5}+\dfrac{7}{21}+\dfrac{-4}{5}+\dfrac{7}{5}=\left(\dfrac{-3}{5}+\dfrac{-4}{5}+\dfrac{7}{5}\right)+\dfrac{7}{21}=0+\dfrac{7}{21}=\dfrac{1}{3}\)
\(B=\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}-\dfrac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{1-5}+\dfrac{2-\sqrt{5}}{4-5}-\dfrac{4\left(3+\sqrt{5}\right)}{9-5}\right]\left(\sqrt{5}-6\right)\)
\(B=\left[-\dfrac{4\left(1+\sqrt{5}\right)}{4}-\dfrac{2-\sqrt{5}}{1}-\dfrac{4\left(3+\sqrt{5}\right)}{4}\right]\left(\sqrt{5}-6\right)\)
\(B=\left(-1-\sqrt{5}-2+\sqrt{5}-3-\sqrt{5}\right)\left(\sqrt{5}-6\right)\)
\(B=\left(-\sqrt{5}-6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(\sqrt{5}+6\right)\left(\sqrt{5}-6\right)\)
\(B=-\left(5-36\right)\)
\(B=-\left(-31\right)\)
\(B=31\)
_____________________________
\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)
\(=4\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}+\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=4\sqrt{3}-\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)
\(=3\sqrt{3}-\sqrt{3}+1\)
\(=2\sqrt{3}+1\)
\(a,\dfrac{15^3}{5^4}\)
\(=\dfrac{\left(3\cdot5\right)^3}{5^4}\)
\(=\dfrac{3^3\cdot5^3}{5^4}\)
\(=\dfrac{3^3}{5}\)
\(=\dfrac{27}{5}\)
\(---\)
\(b,\dfrac{21^3}{7^4}\)
\(=\dfrac{\left(3\cdot7\right)^3}{7^4}\)
\(=\dfrac{3^3\cdot7^3}{7^4}\)
\(=\dfrac{3^3}{7}\)
\(=\dfrac{27}{7}\)
\(---\)
\(c,\dfrac{6^6}{3^8}\)
\(=\dfrac{\left(2\cdot3\right)^6}{3^8}\)
\(=\dfrac{2^6\cdot3^6}{3^8}\)
\(=\dfrac{2^6}{3^2}\)
\(=\dfrac{64}{9}\)
#\(Toru\)
1: 0,35*12,4=0,35*2,4+0,35*10=3,5+0,84=4,34
2: =0,1-2,34=-2,24
3: =5-2,9=2,1
4: \(=2,5\left(10,124-0,124\right)=10\cdot2,5=25\)
5: =-3/7+1/13
=-39/91+7/91
=-32/91
6: =-1/3+1/3=0
1: \(=\dfrac{272-168+186}{30}\cdot\dfrac{7}{9}=\dfrac{29}{3}\cdot\dfrac{7}{9}=\dfrac{203}{27}\)
2: \(=\dfrac{9-55}{33}\cdot\dfrac{6-5}{8}-\dfrac{4}{5}\cdot\dfrac{1}{24}=\dfrac{-4}{3}\cdot\dfrac{1}{8}-\dfrac{1}{30}=\dfrac{-1}{6}-\dfrac{1}{30}=\dfrac{-6}{30}=-\dfrac{1}{5}\)
3: \(=\dfrac{7}{3}\left(\dfrac{6}{25}+\dfrac{19}{25}\right)=\dfrac{7}{3}\cdot1=\dfrac{7}{3}\)
a: \(=\left(\sqrt{3}-2\right)\cdot\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\)
=3-4=-1
b: \(=\sqrt{6+4\sqrt{2}}-\sqrt{11-2\sqrt{18}}\)
\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=2+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}-1\)
c: \(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)
\(=2\sqrt{5}-1+2\sqrt{5}+1\)
\(=4\sqrt{5}\)
|-3| - |-5| - |4| + (-21)
= 3 - 5 - 4 - 21
= -27