a) \(\dfrac{32}{2^n}=4\)
b) \(\dfrac{625}{5^n}=5\)
c) \(27^n:3^n=3^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x-3=x\)
=>x=3
b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+\dfrac{5}{4}\cdot2^x=\dfrac{7}{32}\)
=>2^x=1/8
=>x=-3
c: =>2x+7=-4
=>2x=-11
=>x=-11/2
d: =>(4x-3)^2*(4x-4)(4x-2)=0
hay \(x\in\left\{\dfrac{3}{4};1;\dfrac{1}{2}\right\}\)
\(\left(\dfrac{1}{3}\right)^n=\left(\dfrac{1}{27}\right)\)
\(\Rightarrow\left(\dfrac{1}{3}\right)^n=\left(\dfrac{1}{3}\right)^3\)
\(\Rightarrow n=3\)
\(\left(\dfrac{3}{5}\right)^n=\dfrac{81}{625}\)
\(\Rightarrow\left(\dfrac{3}{5}\right)^n=\left(\dfrac{3}{5}\right)^4\)
\(\Rightarrow n=4\)
a, \(\left(\dfrac{1}{3}\right)^n=\dfrac{1}{27}\Rightarrow\left(\dfrac{1}{3}\right)^n=\left(\dfrac{1}{3}\right)^3\)
Vì \(\dfrac{1}{3}\ne-1,\dfrac{1}{3}\ne0;\dfrac{1}{3}\ne1\) nên \(n=3\)
Vậy........
b, \(\left(\dfrac{3}{5}\right)^n=\dfrac{81}{625}\Rightarrow\left(\dfrac{3}{5}\right)^n=\left(\dfrac{3}{5}\right)^4\)
Vì \(\dfrac{3}{5}\ne-1,\dfrac{3}{5}\ne0;\dfrac{3}{5}\ne1\) nên \(n=4\)
Vậy..........
Chúc bạn học tốt!!!
1. Tìm n, biết:
a) \(\dfrac{-32}{\left(-2\right)^n}=4\)
\(\Rightarrow\dfrac{\left(-2\right)^5}{\left(-2\right)^n}=\left(-2\right)^2\)
\(\Rightarrow\left(-2\right)^n.\left(-2\right)^2=\left(-2\right)^5\)
(-2)n + 2 = (-2)5
n + 2 = 5
n = 5 - 2
n = 3.
b) \(\dfrac{8}{2^n}=2\)
\(\Rightarrow\dfrac{2^3}{2^n}=2\)
\(\Rightarrow\) 2n . 2 = 23
n + 1 = 3
n = 3 - 1
n = 2.
c) \(\left(\dfrac{1}{2}\right)^{2n-1}=\dfrac{1}{8}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{2n-1}=\left(\dfrac{1}{2}\right)^3\)
2n - 1 = 3
2n = 3 + 1
2n = 4
n = 4 : 2
n = 2.
2. Tính:
a) \(\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{4}\right)^2\)
\(=\left(\dfrac{1}{2}\right)^3.\left[\left(\dfrac{1}{2}\right)^2\right]^2\)
\(=\left(\dfrac{1}{2}\right)^3.\left(\dfrac{1}{2}\right)^4\)
\(=\left(\dfrac{1}{2}\right)^7\)
\(=\dfrac{1}{128}\)
b) 273 : 93
= (33)3 : (32)3
= 39 : 36
= 33
= 27
c) 1252 : 253
= (53)2 : (52)3
= 56 : 56
= 1
d) \(\dfrac{27^2.8^5}{6^6.32^3}\)
\(=\dfrac{\left(3^3\right)^2.\left(2^3\right)^5}{6^6.\left(2^5\right)^3}\)
\(=\dfrac{3^6.2^{15}}{6^6.2^{15}}\)
\(=\dfrac{3^6}{6^6}\)
\(=\dfrac{1}{64}.\)
B2 :
b) 27\(^3\): 9\(^3\)= (27:9)\(^3\)= 3\(^3\)
c) 125\(^2\): 25\(^3\)= 15625 : 15625 = 1
a)\(\left(\dfrac{1}{2}\right)^n=\dfrac{1}{32}\)
=>\(\left(\dfrac{1}{2}\right)^n=\left(\dfrac{1}{2}\right)^5\)
=>n=5
b)\(\left(\dfrac{343}{125}\right)=\left(\dfrac{7}{5}\right)^n\)
=>\(\left(\dfrac{7}{5}\right)^3=\left(\dfrac{7}{5}\right)^n\)
=>n=3
c)\(\dfrac{16}{2^n}=2\)
=>2n=\(\dfrac{16}{2}\)
=>2n=8
=>2n=23
=>n=3
d)\(\dfrac{\left(-3\right)^n}{81}=-27\)
=>(-3)n=-27.81
=>(-3)n=-2187
=>(-3)n=(-3)7
=>n=7
e)8n:2n=4
=>(23)n:2n=4
=>23n:2n=4
=>23n-n=4
=>22n=4
=>22n=22
=>2n=2
=>n=1
f)32.3n=35
=>3n=35:32
=>3n=35-2
=>3n=33
=>n=3
g) (22:4).2n=4
=>1.2n=22
=>n=2
h)3-2.34.3n=37
=>\(\left(\dfrac{1}{3}\right)^2\).34.3n=37
=>32.3n=37
=>32+n=37
=>2+n=7
=>n=5
a)\(\dfrac{625}{5^n}=5\)\(\Rightarrow\)\(\dfrac{5^4}{5^n}=5\)\(\Rightarrow\)\(5^n=5^5:5^4=5^1\Rightarrow n=1\)
b)\(\dfrac{\left(-2\right)^n}{16}=-32\Rightarrow\)\(\left(-2\right)^n=-32.16=\left(-1\right).2^5.2^4=\left(-1\right).2^9=\left(-2\right)^9\)
.............................\(\Rightarrow n=9\)
a. \(\dfrac{625}{5^n}=5\Rightarrow5^n=\dfrac{625}{5}=125\Rightarrow5^n=5^3\Rightarrow n=3\left(TMĐK\right)\)
Vậy n=3
b. \(\dfrac{\left(-2\right)^n}{16}=-32\Rightarrow\left(-2\right)^n=-32\cdot16=-512\Rightarrow\left(-2\right)^n=\left(-2\right)^9\Rightarrow n=9\left(TMĐK\right)\)
Vậy n=9
\(\dfrac{625}{5^n}\)=5
=>\(\dfrac{5^4}{5^n}\) =5
=>\(5^4\) :\(5^n\) = 5
=>\(5^{4-n}\) =\(5^1\)
=>4\(-\)n=1
=>n=4-1
=>n=3
a)\(\dfrac{32}{2^n}=4\)
\(\Rightarrow2^n=32:4\)
\(\Leftrightarrow2^n=8\) =23
\(\Rightarrow n=3\)
b)\(\dfrac{625}{5^n}=5\)
\(\Rightarrow5^n=625:5\)
\(\Leftrightarrow5^n=125\)=53
\(\Rightarrow n=3\)
c)27n:3n=32
\(\Leftrightarrow\left(3^3\right)^n:3^n=3^2\)
\(\Leftrightarrow3^{3n}:3^n=3^2\)
\(\Leftrightarrow3^{3n-n}=3^2\)
\(\Rightarrow3^{2n}=3^2\)
\(\Rightarrow n=2:2=1\)
CHÚC BẠN HỌC TỐT
a) 322n=4322n=4
\(\Leftrightarrow\dfrac{2^5}{2^n}=2^2\)
\(\Rightarrow\)\(2^n=2^5:2^2\)
\(\Rightarrow2^n=2^3\)
\(\Rightarrow n=3\)
b) 6255n=56255n=5
\(\Leftrightarrow\dfrac{5^4}{5^n}=5^1\)
\(\Rightarrow5^n=5^4:5^1\)
\(\Rightarrow5^n=5^3\)
\(\Rightarrow n=3\)