Chứng minh rằng hình thang cân ABCDb có các đỉnh cùng thuộc 1 đường tròn tâm O
Mong các bạn giải giúp mình ạ !
Cảm ơn các bạn nhìu !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi trực tâm là giao điểm của ba đường cao trong tam giác
Còn trực tâm của 3 điểm thì mình chưa nghe bao giờ.
Kéo dài BO' cắt (O') tại J; kéo dài CA cắt BD tại I.
Ta thấy bời vì hai đường tròn cùng bán kính nên OAO'B là hình thoi. Vậy thì OA // BO' hay OA // O'J
Lại có do DCOO' là hình bình hành nên OC // O'D
Vậy thì \(\widehat{COA}=\widehat{DO'J}\)
Ta có \(\widehat{ICB}+\widehat{CBI}=\widehat{ICB}+\widehat{CBA}+\widehat{ABD}=\frac{sđ\widebat{AB}+sđ\widebat{CA}+sđ\widebat{AD}}{2}\)
\(=\frac{sđ\widebat{BA}+sđ\widebat{AD}}{2}+\frac{\widehat{COA}}{2}=\frac{sđ\widebat{BD}+\widehat{COA}}{2}\)
\(=\frac{\widehat{BO'D}+\widehat{DO'J}}{2}=\frac{180^o}{2}=90^o\)
Vậy thì \(\widehat{CIB}=90^o\Rightarrow CA\perp BD\)
Lại có theo tính chất đường nối tâm, \(AB\perp OO'\) mà OO' // CD nên \(BA\perp CD\)
Xét tam giác BCD có \(CA\perp BD;BA\perp CD\) nên A là trực tâm tam giác BCD.
c,
- Gọi O là giao điểm của AC và BD.
- AB//CD nên góc BAC = góc ACD (so le trong), tương tự góc ABD=góc BDC.
- Theo đề bài góc ACD=gócBDC nên góc BAC=góc ABD.
=>Tam giác ABO cân tại O => 0A=0B.(1)
Tương tự tam giác ODC cân tại O =>OD=OC.(2)
Lại có góc AOD=góc BOC (đối đỉnh ) (3)
Từ (1), (2), (3) suy ra tam giác AOD = tam giác OBC nên suy ra :
+ AD=BC (*)
+ Góc ADB=góc BCA(**)
Từ (*) và (**) suy ra hình thang ABCD cân(hình thang có hai cạnh bên bằng nhau và hai góc ở đáy bằng nhau )
Vì tam giác ABC cân tại A
=> Góc ABC=ACB
=> AB=AC ( t/c tam giác cân) (1)
Mà AH=AK ( gt) (2)
Và AH+HC=AC; AK+KB=AB (3)
Từ (1)(2)(3) => HC = KB
Xét tam giác KBC và HCB có:
BC chung
Góc ABC=ACB ( chứng minh trên)
KB=HC ( chứng minh trên)
=> Tam giác KBC=HCB ( c.g.c )
=> Góc KCB=HBC
Hay tam giác OBC cân tại O
xin loi minh ko biet nha bn
xin loi minh ko biet nha bn
xin loi minh ko biet nha bn
Ta có hình vẽ và các điểm tương ứng. Gọi x là chiều rông 2 con đường, đk : 0<x<15
Hình thang GHIK là hình thang cân, có đáy lớn cộng đáy nhỏ bằng 2MN = AB + DC = 80
Vậy \(S_{GHIK}=\frac{80.2x}{2}=80x\)
PQRS là hình bình hành nên diện tích bằng: \(2x.35=70x\)
Phần gạch chéo là hình bình cạnh đáy 2x, chiều cao 2x nên diện tích là \(2x.2x=4x^2\)
Vậy diện tích hình GPQHIRSK bằng: \(S_{GHIK}+S_{PQRS}\)- S phần gạch chéo = \(80x+70x-4x^2=\frac{1}{4}\frac{80.35}{2}\Rightarrow-4x^2+150x-350=0\Rightarrow\orbr{\begin{cases}x=2,5\\x=35\left(L\right)\end{cases}}\)
Gọi \(O\) là giao điểm của trục của hình thang cân \(ABCD\) và đường trung trực của cạnh bên \(AD\). Sử dụng tính chất: Điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó chứng minh \(OA=OB=OC=OD\).
Gọi O=d∩d′O ta có:
\(d\) là trục của hình thang cân \(ABCD\)⇒ d là đường trung trực của AB và CD.
Mà \(O\) ∈ \(d\)⇒{\(OA=OB\)
\(OC=OD\) (1)
(điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó).
Lại có \(O\) ∈ \(d'\)⇒\(OA=OD\) (2)
(điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó).
Từ (1) và (2) ⇒ \(OA=OB=OC=OD\)
Vậy bốn điểm \(A,B,C,D\)cùng thuộc đường tròn tâm \(O\), bán kính \(R=OA=OB=OC=OD\).
Ta có: ABCD là hình thang cân
nên \(\widehat{A}=\widehat{B};\widehat{C}=\widehat{D}\)
hay \(\widehat{A}+\widehat{C}=180^0\)
Xét tứ giác ABCD có
\(\widehat{A}+\widehat{C}=180^0\)
Do đó: ABCD là tứ giác nội tiếp
hay A,B,C,D cùng thuộc 1 đường tròn