K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\)

Dấu '=' xảy ra khi x=-5/41

b: \(B=-\sqrt{x-\dfrac{2}{3}}-\dfrac{5}{13}\le-\dfrac{5}{13}\)

Dấu '=' xảy ra khi x=2/3

21 tháng 6 2021

`a)(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)(x>=0,x ne 4,x ne 9)`

`=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)+(2sqrtx+1)/(sqrtx-3)`

`=(2sqrtx-9+(sqrtx-3)(sqrtx+3)+(2sqrtx+1)(sqrtx-2))/(x-5sqrtx+6)`

`=(2sqrtx-9+x-9+2x-3sqrtx-2)/(x-5sqrtx+6)`

`=(3x-sqrtx-20)/

21 tháng 6 2021

Lỗi nhẹ :v

9 tháng 6 2021

a, ĐKXĐ: \(x\ne1;x\ne-1\)

b, Với \(x\ne1;x\ne-1\)

\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)

=> ĐPCM

6 tháng 2 2019

Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)

\(\Leftrightarrow yx^2+yx+y=x^2+2\)

\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)

*Xét y = 1 thì pt trở thành \(x-1=0\)

                                   \(\Leftrightarrow x=1\)

*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x

Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)

         \(=y^2-4\left(y^2-3y+2\right)\)

          \(=y^2-4y^2+12y-8\)

         \(=-3y^2+12y-8\)

Pt (1) có nghiệm khi \(\Delta\ge0\)

                         \(\Leftrightarrow-3y^2+12y-8\ge0\)

                         \(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)

6 tháng 2 2019

bạn icu... làm đúng rồi

11 tháng 6 2021

a) C được xác định <=> x khác +- 2

b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)

Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)

c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1

Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương

11 tháng 6 2021

mình cảm ơn ạ

a: ĐKXĐ: \(\left\{{}\begin{matrix}a>=0\\a< >1\end{matrix}\right.\)

\(A=\dfrac{1}{2\left(\sqrt{a}+1\right)}-\dfrac{1}{2\left(\sqrt{a}-1\right)}+\dfrac{a^2+1}{a^2-1}\)

\(=\dfrac{\sqrt{a}-1-\sqrt{a}-1}{2\left(a-1\right)}+\dfrac{a^2+1}{a^2-1}\)

\(=\dfrac{-1}{a-1}+\dfrac{a^2+1}{a^2-1}\)

\(=\dfrac{-a-1+a^2+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{a^2-a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{a+1}\)

b: Để A-1/3<0 thì \(\dfrac{a}{a+1}-\dfrac{1}{3}< 0\)

=>3a-a-1<0

=>2a-1<0

hay 0<a<1/2

12 tháng 9 2021

a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)

c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)

\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)

d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)

\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)

e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)

\(minE=-20\Leftrightarrow x=-3\)

f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)

12 tháng 9 2021

\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)

Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

Mấy câu còn lại làm tương tự nhé em^^

11 tháng 7 2018

\(a.P=\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}=\dfrac{\sqrt{x}-3-5+\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-8+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\) ( x ≥ 0 ; x # 9 )

\(b.\) \(P=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{2\left(\sqrt{x}+2\right)-\sqrt{x}}{\sqrt{x}+2}=2-\dfrac{\sqrt{x}}{\sqrt{x}+2}\text{≤}2\)

\(P_{Max}=2."="\)\(x=0\)