5/1.4 + 5/4.7 + 5/7.10 + ..... + 5/22.25
Tính ạ
GIÚP NHANH Ạ CẦN GẤP TICK CHO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f,F=3. (1/2 .3 + 1/3.4 +...+ 1/99.100)
= 3. (1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/99 - 1/100
= 3. (1/2 - 1/100)
= 3. 49/100
= 147/100
g, G = 5/3. (3/1.4 + 3/4.7 +...+ 3/61.64)
= 5/3 . (1 - 1/4 + 1/4 - 1/7 +...+ 1/61 - 164
= 5/3 . (1-1/64)
= 5/3 . 63/64
= 105/64
f, \(F=\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{99.100}\)
\(\Leftrightarrow F=3\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(\Leftrightarrow F=3\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Leftrightarrow F=3\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(\Leftrightarrow F=3\left(\frac{49}{100}\right)=\frac{147}{100}\)
g, \(G=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{61.64}\)
\(\Leftrightarrow G=5\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{61.64}\right)\)
\(\Leftrightarrow G=5.\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{61}-\frac{1}{64}\right)\)
\(\Leftrightarrow G=\frac{5}{3}\left(1-\frac{1}{64}\right)\)
\(\Leftrightarrow G=\frac{5}{3}.\frac{63}{64}=\frac{105}{64}\)
\(G=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{61.64}\)
\(\Rightarrow G=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+..+\frac{3}{61.64}\right)\)
\(\Rightarrow G=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+..+\frac{1}{61}-\frac{1}{64}\right)\)
\(\Rightarrow G=\frac{5}{3}.\left(1-\frac{1}{64}\right)=\frac{5}{3}.\frac{63}{64}\)
\(\Rightarrow G=\frac{5.63}{3.64}=\frac{5.21.3}{3.64}=\frac{5.21}{64}=\frac{105}{64}\)
a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.....+\frac{5}{27.30}\)
\(=\frac{5}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+........+\frac{1}{27.30}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{27}-\frac{1}{30}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{30}\right)\)
\(=\frac{5}{3}.\frac{29}{30}=\frac{29}{36}\)
Đặt \(A=\frac{12}{3\cdot5}+\frac{12}{5\cdot7}+\frac{12}{7\cdot9}+....+\frac{12}{97\cdot99}\)
\(2A=\frac{12}{3}-\frac{12}{5}+\frac{12}{5}-\frac{12}{7}+...+\frac{12}{97}-\frac{12}{99}\)
\(2A=\frac{12}{3}-\frac{12}{99}\)
\(A=\frac{128}{33}\cdot\frac{1}{2}=\frac{64}{33}\)
Làm từng phần nha bạn
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{298\cdot301}+x=\frac{299}{301}\)
Đặt \(A+x=\frac{299}{301}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{298}-\frac{1}{301}\)
\(A=1-\frac{1}{301}\)
\(A=\frac{300}{301}\)
=> \(\frac{300}{301}+x=\frac{299}{301}\)
\(x=\frac{299-300}{301}\)
\(x=-\frac{1}{301}\)
\(A=5\cdot\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{301\cdot304}\right)\)
\(\frac{3A}{5}=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{301\cdot304}\)
\(\frac{3}{5}\cdot A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{301}-\frac{1}{304}\)
\(\frac{3}{5}\cdot A=1-\frac{1}{304}\)
\(\frac{3}{5}\cdot A=\frac{303}{304}\)
\(A=\frac{505}{304}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}\)
\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{103}\right)\)
\(=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{100.103}=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
ta nhân 3 cả hai vế, được :
\(\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{102.105}\right)x=3\)
hay
\(\left(\frac{4-1}{1.3}+\frac{7-4}{4.7}+...+\frac{105-102}{102.105}\right)x=3\) \(\Leftrightarrow\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+..+\frac{1}{102}-\frac{1}{105}\right)x=3\)
\(\Leftrightarrow\left(1-\frac{1}{105}\right)x=3\Leftrightarrow\frac{104}{105}.x=3\Leftrightarrow x=\frac{315}{104}\)
5/1.4 + 5/4.7 + 5/7.10 + ... + 5/97.100
= 5/3 . (3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100)
= 5/3 . (1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/97 - 1/100)
= 5/3 . ( 1 - 1/100)
= 5/3 . 99/100
= 33/20
a) A = 3/10.12 + 3/12.14 + ... + 3/998.1000
2/3.A = 2/10.12 + 2/12.14 + ... + 2/998.1000
2/3.A = 1/10 - 1/12 + 1/12 - 1/14 + ... + 1/998 - 1/1000
2/3.A = 1/10 - 1/1000
2/3.A = 99/1000
A = 99/1000 : 2/3
A = 99/1000 . 3/2
A = 297/2000
b) B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/22.25
3/2.B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/22.25
3/2.B = 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/22 - 1/25
3/2.B = 1 - 1/25
3/2.B = 24/25
B = 24/25 : 3/2
B = 24/25 . 2/3
B = 16/25
Ủng hộ mk nha ^_-
a) Ta có: \(A=\frac{3}{10.12}+\frac{3}{12.14}+....+\frac{3}{998.1000}.\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{10.12}+\frac{1}{12.14}+...+\frac{1}{998.1000}\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{998}-\frac{1}{1000}\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{10}-\frac{1}{1000}=\frac{99}{1000}\)
\(\Rightarrow A=\frac{99}{1000}:\frac{2}{3}=\frac{297}{2000}\)
a) Ta có: \(A=\dfrac{4}{1\cdot4}+\dfrac{4}{4\cdot7}+\dfrac{4}{7\cdot10}+...+\dfrac{4}{31\cdot34}\)
\(=\dfrac{4}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{31\cdot34}\right)\)
\(=\dfrac{4}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)\)
\(=\dfrac{4}{3}\left(1-\dfrac{1}{34}\right)\)
\(=\dfrac{4}{3}\cdot\dfrac{33}{34}=\dfrac{22}{17}\)
5/1.4 + 5/4.7 + 5/7.10 + ..... + 5/22.25
= 5/3 . ( 5/1.4 + 5/4.7 + 5/7.10 + ..... + 5/22.25 )
= 5/3 . ( 1/1 - 1/4 + 1/4 - 1/5 + 1/5 - ....... + 1/22 - 1/25 + 1/25 )
= 5/3 . ( 1/1 - 1/25 )
= 5/3 . 24/25
= 8/5
chắc thế bạn ạ
Đặt A=(đa thức trên)
Có A=5(1/1.4+1/4.7+...+1/22.25)
=> A=5/3.(1-1/4+1/4-1/7+1/7-...+1/22-1/25)
=> A=5/3.(1-1/25)
=> A= 5/3.24/25
=> A= 8/5