tìm các cặp số nguyên tố (p,q) thỏa mãn pt sau:\(20p^3=1+q^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow x^4+y^3-xy^3-1=0\)
\(\Leftrightarrow\left(x^4-1\right)+\left(y^3-xy^3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1\right)-y^3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1-y^3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x^3+x^2+x+1=y^3\end{cases}}\)
TH1 : \(x=1\Rightarrow y\in Z\)
TH2 : \(x^3+x^2+x+1=y^3\)
Ta có : \(x^3< x^3+x^2+x+1< x^3+3x^2+3x+1\)
\(\Leftrightarrow x^3< x^3+x^2+x+1< \left(x+1\right)^3\)
\(\Rightarrow x^3+x^2+x+1\notin Z\) hay \(y\notin Z\) (loại)
Vậy \(x=1\) và \(y\in Z\)
Có p là số nguyên tố,p lẻ
+)Xét p=3 suy ra 134=2q(17q+24) suy ra q(17q+24)=67
Mà q lớn hơn hoặc = 2 nên vô lí
+)Xét p>3.p nguyên tố nên p ko chia hết cho 3
th1: p chia 3 dư 1.Đặt p=3k+1 nên VT chia hết cho 3 nên VP chia hết cho 3, Từ đó suy ra q chia hết cho 3,mà q nguyên tố nên q=3.Thay vào tìm ra p
th2 : p chia 3 dư 2. Đặt p=3k+2 nên VT chia 3 dư 2. VT=VP nên 2q(17q+24) chia 3 dư 2
Từ đó có q(17q+24) chia 3 dư 1 nên 17q^2 +24q chia 3 dư 1
Mà 24q chia hết cho 3 nên 17q^2 chia 3 dư 1(loại)
\(p^2-2q^2=1\)
\(\Rightarrow p^2=2q^2+1\)
\(\Rightarrow p\) là số lẻ
Đặt \(p=2n+1\Rightarrow p^2=4n^2+4n+1\)
mà \(p^2=2q^2+1\)
\(\Rightarrow4n^2+4n+1=2q^2+1\)
\(\Rightarrow2\left(2n^2+2n\right)=2q\)
\(\Rightarrow2n^2+2n=q\)
\(\Rightarrow2\left(n^2+n\right)=q\)
\(\Rightarrow q\) là số chẵn
mà \(q\) là số nguyên tố
\(\Rightarrow q=2\)
\(\Rightarrow p^2=2.2^2+1=9\Rightarrow p=3\)
Vậy \(\left(p;q\right)\in\left\{3;2\right\}\) thỏa mãn đề bài
Ta có: \(p^2-2q^2=1\)
Do 1 là số lẻ nên \(2q^2\) chẵn và \(p\) lẻ
\(\Rightarrow p^2-1=2q^2\)
\(\Leftrightarrow\left(p-1\right)\left(p+1\right)=2q^2\)
Mà \(p\) lẻ nên \(p+1,p-1\) đều là chẵn
\(\Rightarrow\left(q-1\right)\left(q+1\right)\) ⋮ 4
\(\Leftrightarrow q^2\) ⋮ 2 \(\Rightarrow q\) ⋮ 2 \(\Rightarrow q=2\)
\(\Rightarrow p^2=2\cdot2^2+1=9\Rightarrow q=3\)
Vậy: (q;p) là (2;3)