Cho a,b,c >0 thỏa mãn: ab+ bc+ca=1. Rút gọn biểu thức:
A= \(a\sqrt{\dfrac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}+b\sqrt{\dfrac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}+c\sqrt{\dfrac{\left(b^2+1\right)\left(a^2+1\right)}{c^2+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)
\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
Đẳng thức quen thuộc: \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\) và tương tự cho các mẫu số còn lại
Ta có:
\(\sum\dfrac{1}{a^2+1}=\sum\dfrac{1}{\left(a+b\right)\left(a+c\right)}=\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Mặt khác:
\(2\left(ab+bc+ca\right)\left(a+b+c\right)=\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\left(a+b+c\right)\)
\(\ge\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\) (Bunhiacopxki)
\(\Rightarrow\sum\dfrac{1}{a^2+1}\ge\dfrac{\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\left(\dfrac{a}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\right)^2\)
\(=\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^2\)
Do đó ta chỉ cần chứng minh:
\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{3}{2}\)
Đúng theo AM-GM:
\(\sum\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Ta có VP:
\(\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)
Thay \(1=ab+bc+ca\)
\(=\dfrac{2}{\sqrt{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}}\)
\(=\dfrac{2}{\sqrt{\left[b\left(a+c\right)+a\left(a+c\right)\right]\left[a\left(b+c\right)+b\left(b+c\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]}}\)
\(=\dfrac{2}{\sqrt{\left(a+c\right)\left(a+b\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)}}\)
\(=\dfrac{2}{\sqrt{\left[\left(a+c\right)\left(a+b\right)\left(b+c\right)\right]^2}}\)
\(=\dfrac{2}{\left(a+c\right)\left(a+b\right)\left(b+c\right)}\)
_____________
Ta có VT:
\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\)
Thay \(1=ab+ac+bc\)
\(=\dfrac{a}{ab+ac+bc+a^2}+\dfrac{b}{ab+ac+bc+b^2}+\dfrac{c}{ab+ac+bc+c^2}\)
\(=\dfrac{a}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{b}{b\left(b+c\right)+a\left(b+c\right)}+\dfrac{c}{c\left(b+c\right)+a\left(b+c\right)}\)
\(=\dfrac{a}{\left(a+c\right)\left(a+b\right)}+\dfrac{b}{\left(a+b\right)\left(b+c\right)}+\dfrac{c}{\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{a\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}+\dfrac{b\left(a+c\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}+\dfrac{c\left(a+b\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{ab+ac+ab+bc+ac+bc}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{2ab+2ac+2bc}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{2\cdot\left(ab+ac+bc\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\left(ab+ac+bc=1\right)\)
Mà: \(VP=VT=\dfrac{2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}=\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\left(dpcm\right)\)
Ta có \(\sqrt{bc\left(1+a^2\right)}=\sqrt{bc+a^2bc}=\sqrt{bc+a\left(a+b+c\right)}\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}\)
Đặt BT đề cho là P
\(\Leftrightarrow P=\sum\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}=\sum\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{b+a}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)
Dấu \("="\Leftrightarrow a=b=c=\sqrt{3}\)
bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay
Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến
Lời giải:
Do \(ab+bc+ac=1\) nên:
\(a^2+1=a^2+ab+bc+ac=(a+b)(a+c)\)
\(b^2+1=b^2+ab+bc+ac=(b+a)(b+c)\)
\(c^2+1=c^2+ab+bc+ac=(c+a)(c+b)\)
Do đó:
\(A=a\sqrt{\frac{(b^2+1)(c^2+1)}{a^2+1}}+b\sqrt{\frac{(a^2+1)(c^2+1)}{b^2+1}}+c\sqrt{\frac{(b^2+1)(a^2+1)}{c^2+1}}\)
\(=a\sqrt{\frac{(b+c)(b+a)(c+a)(c+b)}{(a+b)(a+c)}}+b\sqrt{\frac{(a+b)(a+c)(c+a)(c+b)}{(b+a)(b+c)}}+c\sqrt{\frac{(b+a)(b+c)(a+b)(a+c)}{(c+a)(c+b)}}\)
\(=a(b+c)+b(a+c)+c(a+b)=2(ab+bc+ac)=2\)
Vậy \(A=2\)
cảm ơn bạn nhiều