\(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
chứng mình rằng A chia hết cho 10
giải thích tại sao lại làm như vậy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{49}+3^{50}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{49}.\left(1+3\right)\)
\(A=3.4+3^3.4+...+3^{49}.4\)
\(A=4.\left(3+3^3+...+3^{49}\right)⋮4\)
\(\Rightarrow A=3+3^2+3^3+3^4+...+3^{50}⋮4\left(đpcm\right)\)
b) \(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)
\(A=120+...+3^{46}.\left(3+3^2+3^3+3^4\right)\)
\(A=120+...+3^{46}.120\)
\(A=120.\left(1+...+3^{46}\right)⋮10\)
\(\Rightarrow A=3+3^2+3^3+3^4+...+3^{49}+3^{50}⋮10\left(đpcm\right)\)
a, NXét: Dãy số là dãy liên tiếp từ 1 đến 49 >> kiểu gì cx có số 10 >> chia hết cho 10
b, méo hiểu đề ???
a/ \(A=3+3^2+3^3+3^4+.............+3^{49}+3^{50}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+............+\left(3^{49}+3^{50}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+............+3^{49}\left(1+3\right)\)
\(=3.4+3^3.4+...............+3^{49}.4\)
\(=4\left(3+3^3+...........+3^{49}\right)⋮4\)
\(\Leftrightarrow A⋮4\left(đpcm\right)\)
b/ \(A=3+3^2+3^3+3^4+.............+3^{49}+3^{50}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^9\right)+........+\left(+3^{47}+3^{48}+3^{49}+3^{50}\right)\)
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+........+3^{47}\left(1+3+3^2+3^3\right)\)
\(=3.40+3^5.40+.........+3^{47}.40\)
\(=40\left(3+3^5+...........+3^{47}\right)⋮10\)
\(\Leftrightarrow A⋮10\left(đpcm\right)\)
Bạn lấy 1 và 3, 2 và 4, 5 và 7....48 và 50 cộng với nhau có tổng chia hết cho 10 Suy ra a chia hết cho 10
\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)
Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với
A=3+32 +33+34+...+349+350
=(3+32)+(32+33)+...(349+350)
=3.(1+3)+52.(1+3)+.....+349+(1+3)
=3.4+33.4+...+349.4
=4.(3+33+...+349)chia hết cho 4
=> A chia hết cho 4
Ta có : A = \(31n^3+11n\)\(=31n^3-n+12n\)\(=n.31\left(n^2-1\right)+12n\)\(=31.n\left(n-1\right).\left(n+1\right)+12n\)
Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp
nên (n-1).n.(n+1) chia hết cho 6
=> (n-1).n.(n+1).31 chia hết cho 6
Và 12n chia hết cho 6
=>31 (n-1).n.(n+1) + 12n chia hết cho 6
vậy A chia hết cho 6
a, 11 + 112 + 113 + ... + 117 + 118
= (11 + 112) + (113 + 114) + ... + (117 + 118)
= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)
= 11.12 + 113.12 + .... + 117.12
= 12(11 + 113 + ... + 117) chia hết cho 12
b, 7 + 72 + 73 + 74
= (7 + 73) + (72 + 74)
= 7(1 + 72) + 72(1 + 72)
= 7.50 + 72.50
= 50(7 + 72) chia hết cho 50
c, 3 + 32 + 33 + 34 + 35 + 36
= (3 + 32 + 33) + (34 + 35 + 36)
= 3(1 + 3 + 32) + 34(1 + 3 + 32)
= 3.13 + 34.13
= 13(3 + 34) chia hết cho 13
1.
\(A=7+7^2+7^3+...+7^{78}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)
\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)
\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8
Vậy A chia hết cho 8 (đpcm)
\(A=3+3^2+3^3+...+3^{155}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)
\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)
\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121
Vậy A chia hết cho 121 (đpcm)
A = 3 + 32 + 33 + 34 + ... + 349 + 350
A = ( 3 + 32 + 33 + 34 ) + ( 35 + 36 + 37 + 39 ) + ... + ( 347 + 348 + 349 + 350 )
A = 3 . ( 1 + 3 + 32 + 33 ) + 35 . ( 1 + 3 + 32 + 33 ) + ... + 347 . ( 1 + 3 + 32 + 33 )
A = 3 . 40 + 35 . 40 + ... + 347 . 40
A = 40 . ( 3 + 35 + ... + 347 ) \(⋮\)10
Vậy A \(⋮\)10
=> ( Đpcm )