K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

chỗ mk ghi chia hết và không chia hết, pn ghi kí hiệu nhé, cùng chia hết thì ghi chữ; pn dùng ngoặc nhọn chỗ do đó và mà nhé.

a) A= n2 + 3n + 18

= n2 + 5n - 2n - 10 + 28

= n(n + 5) - 2(n + 5) + 28

= (n + 5)(n - 2) + 28

Xét (n + 5) và (n - 2)

(n + 5) - (n - 2) = 7 chia hết cho 7

=> (n + 5), (n - 2) cùng chia hết cho 11

Do đó: (n + 5).(n - 2) chia hết cho 7.7= 49

Mà: 28 chia hết cho 7

=> (n + 5)(n - 2) + 28 không chia hết cho 49

b) B = n2 + 3n - 6

= n2 + 7n - 4n - 28 + 22

= n(n + 7) - 4(n + 7) + 22

= (n + 7)(n - 4) + 22

Xét (n + 7) và (n - 4)

(n + 7) - (n - 4)= 11 chia hết cho 11

=> (n + 7) và (n - 4) cùng chia hết cho 11

Do đó: (n + 7).(n - 4) chia hết cho 11.11 = 121

Mà: 22 không chia hết hết cho 121

=> (n + 7)(n - 4) + 22 không chia hết cho 121

20 tháng 11 2017

chỗ câu a là cùng chia hết cho 7 nhé, mk ghi lộn, xin lỗi

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:

a. Bạn xem lại đề.

b.

Phản chứng. Giả sử tồn tại $n\in\mathbb{N}$ mà $n^2+3n+5\vdots 121(1)$

$\Rightarrow n^2+3n+5\vdots 11$

$\Leftrightarrow n^2-8n+16\vdots 11$

$\Leftrightarrow (n-4)^2\vdots 11$

$\Leftrightarrow n-4\vdots 11$ (do 11  là snt)

$\Leftrightarrow (n-4)^2=n^2-8n+16\vdots 121(2)$

Từ $(1); (2)\Rightarrow 11n-11\vdots 121$

$\Leftrightarrow n-1\vdots 11$ (vô lý vì $n-4\vdots 11$)

Vậy điều gs sai. Ta có đpcm.

 

 

3 tháng 11 2018

a)\(n^2+3n+5\)

\(=\left(11k+4\right)^2+3\left(11k+4\right)+5\)

\(=121k^2+88k+16+33k+12+5\)

\(=121k^2+121k+33⋮11\)\(\Rightarrow n^2+3n+5⋮11\)

b)Có: \(n^2+3n+5\)\(=121k^2+121k+33\)\(⋮̸\)\(121\)

\(\Rightarrow n^2+3n+5⋮̸\)\(121\)

13 tháng 11 2015

tick cho mình rồi mình làm cho

28 tháng 9 2023

\(9x^2-1=0\)

\(x^2=\dfrac{1}{9}\)

\(\Rightarrow x=\pm\dfrac{1}{3}\Rightarrow x\in Q\)

Chọn A

28 tháng 9 2023

Thầy ơi nếu \(\forall n\in N:n^2>n\) mà với \(n=0;n=1\) thì mệnh đề \(C\) sai chứ ạ!

3 tháng 1 2019

C/M chia hết cho 3 và 8

3 tháng 1 2019

\(\left(n^2+3n+1\right)-1=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Bn chứng minh biểu thức trên chia hết cho 3 và 2 nhé!

Sau đó lí luận là (3,2) = 1 và 3.23=24 nên biểu thức chia hết cho 24  

P/s:  ( Nếu có sai sót mong thông cảm =))

8 tháng 11 2017

vì \(n^2+3n+5⋮121\)nên \(4n^2+12n+20⋮121\)( vì (4,121)=1)

                                              => \(\left(2n+3\right)^2+11⋮11\)

                                               => \(\left(2n+3\right)^2⋮11\)

                                              => \(2n+3⋮11\)

                                              => \(\left(2n+3\right)^2⋮121\)(vì 11 là số nguyên tố )

                                             mà 11 không chia hết cho 121 

                                              => \(\left(2n+3\right)^2+11⋮̸\) cho 121 (đề sai)

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

8 tháng 2 2019

\(A=n^3+3n^2+5n+3\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n+3\right)\)

\(=\left(n+1\right)\left[n\left(n+2\right)+3\right]\)

\(=n\left(n+1\right)\left(n+2\right)+3\left(n+1\right)\)

Do n ; n + 1 ; n + 2 là 3 số nguyên dương liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)

\(\Rightarrow...+3\left(n+1\right)⋮3\)

hay \(A⋮3\left(đpcm\right)\)

8 tháng 2 2019

\(A=n^3+3n^2+6n-\left(n+3\right)+6\)

\(=\left(n^2-1\right)\left(n+3\right)+6n+6\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)+6\left(n+1\right)\)

Có: \(n+3\equiv n\)(mod 3)

\(\left(n-1\right)n\left(n+1\right)⋮3\forall n\in Z^+\)

nên \(A⋮3\forall n\in Z^+\)