Có các số nguyên nào thỏa mãn đồng thời các đẳng thức sau không ? <đang cần gấp>
x3 + xyz = 957 (1)
y3 + xyz = 795 (2)
z3 + xyz = 579 (3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x3 + xyz = x(x2+yz)=957 là số lẻ => x là số lẻ
Tương tự: y, z cũng là số lẻ
Do đó : x3 là số lẻ, xyz là số lẻ ( vì x,y,z là số lẻ)
Nên : x3 + xyz là số chẵn ( trái với đề bài)
Vậy: ko có các số nguyên x,y,z nào đồng thời thỏa mãn 3 đẳng thức trên
giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho
xét x^3 + xyz= 975 ta có
x^3 + xyz= x(x^2+yz)=975 => x là số lẻ
tương tự xết y^3 + xyz và z^3 + xyz ta cũng đc y,z là số lẻ
x là số lẻ => x^3 là số lẻ
=> x^3+xyz là số chẵn
trái với đề bài nên ko tồn tại số nguyên x,y,z thỏa mãn đẳng thức đã cho
Bài 1:
Giả sử có các số nguyên thỏa mãn các đẳng thức đã cho
Xét x3+xyz=x(x2+yz)=579 -->x lẻ.
Tương tự xét
y3+xyz=795; z3+xyz=975 ta đc: y,z là số lẻ
Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là một số chẵn trái với đề bài
Vậy không tồn tại các số nguyên x,y,z thỏa mãn đẳng thức đã cho
Bài 2:
Ta có: VP=1984
Vì 2x-2y=1984>0 =>x>y
=>VT=2x-2y=2y(2x-y-1)
pt trở thành:
2y(2x-y-1)=26*31
\(\Rightarrow\begin{cases}2^y=2^6\left(1\right)\\2^{x-y}-1=31\left(2\right)\end{cases}\)
Từ pt (1) =>y=6
Thay y=6 vào pt (2) đc:
2x-6-1=31 => 2x-6=32
=>2x-6=25
=>x-6=5 <=>x=11
Vậy x=11 và y=6
Giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho.
Xét x3+xyz=x(x2+yz)=579 --> x là số lẻ.Tương tự xét
y3+xyz=795; z3+xyz=975 ta được y,z là số lẻ
Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là 1 số chẵn trái với đề bài cho x3+xyz=579 là số lẻ
Vậy không tồn tại các số nguyên x,y,z thỏa mãn các đẳng thức đã cho.
TH1:
Nếu x,y,z <0
thì (1),(2),(3) <0
TH2:
Nếu x,y,z >0
Thì(1),(2),(3)>0
TH3:
Nếu x,y,z =0
Thì (1),(2),(3)=0