K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

TH1:

Nếu x,y,z <0

thì (1),(2),(3) <0

TH2:

Nếu x,y,z >0

Thì(1),(2),(3)>0

TH3:

Nếu x,y,z =0

Thì (1),(2),(3)=0

4 tháng 9 2016

Ta có : x3 + xyz = x(x2+yz)=957 là số lẻ => x là số lẻ

Tương tự: y, z cũng là số lẻ

Do đó : x3 là số lẻ, xyz là số lẻ ( vì x,y,z là số lẻ)

Nên : x3 + xyz là số chẵn ( trái với đề bài)

Vậy: ko có các số nguyên x,y,z nào đồng thời thỏa mãn 3 đẳng thức trên

5 tháng 12 2016

giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho 

xét x^3 + xyz= 975 ta có

x^3 + xyz= x(x^2+yz)=975 => x là số lẻ

tương tự xết y^3 + xyz và z^3 + xyz ta cũng đc y,z là số lẻ

x là số lẻ => x^3 là số lẻ 

=> x^3+xyz là số chẵn 

trái với đề bài nên ko tồn tại số nguyên x,y,z thỏa mãn đẳng thức đã cho

19 tháng 8 2016

Bài 1:

Giả sử có các số nguyên thỏa mãn các đẳng thức đã cho

Xét x3+xyz=x(x2+yz)=579 -->x lẻ.

Tương tự xét

y3+xyz=795; z3+xyz=975 ta đc: y,z là số lẻ

Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là một số chẵn trái với đề bài

Vậy không tồn tại các số nguyên x,y,z thỏa mãn đẳng thức đã cho

Bài 2:

Ta có: VP=1984

Vì 2x-2y=1984>0 =>x>y

=>VT=2x-2y=2y(2x-y-1)

pt trở thành:

2y(2x-y-1)=26*31 

\(\Rightarrow\begin{cases}2^y=2^6\left(1\right)\\2^{x-y}-1=31\left(2\right)\end{cases}\)

Từ pt (1) =>y=6

Thay y=6 vào pt (2) đc:

2x-6-1=31 => 2x-6=32

=>2x-6=25

=>x-6=5 <=>x=11

Vậy x=11 và y=6

 

 

 

 

20 tháng 6 2016

Giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho. 

Xét x3+xyz=x(x2+yz)=579 --> x là số lẻ.Tương tự xét

y3+xyz=795; z3+xyz=975 ta được y,z là số lẻ

Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là 1 số chẵn trái với đề bài cho x3+xyz=579 là số lẻ 

Vậy không tồn tại các số nguyên x,y,z thỏa mãn các đẳng thức đã cho.