Chứng minh rằng nếu số tự nhiên a không chia hết cho 7 thì: a6-1 chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(a^6-1=\left(a^3-1\right)\left(a^3+1\right)\)
Đặt \(a=7k⊥r\)với r=1;2;3. (vì a không là bội của 7)
Ta có \(a^3=\left(7k⊥r\right)^3=343k^3⊥147k^2r+21kr^2⊥r^3\)
Xét r với lần lượt các giá trị 1;2;3.
Từ đó ta suy ra được \(a^3=7l⊥1\)
Xét từng trường hợp trên ta suy ra \(\left(a^3-1\right)\left(a^3+1\right)⋮7\)dẫn đến \(\left(a^6-1\right)⋮7\)
Vậy........
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.
Có a6-1=(a3+1)(a3-1)
Nếu a= 7k \(\pm1\left(k\in N\right)\) thì BS7 \(\pm1\)
Nếu a = 7k \(\pm2\) thì a3=BS7 \(\pm8\)
Nếu a = 7k \(\pm3\) thì a3=BS7 \(\pm27\). Ta luôn luôn có a3+1 hoặc a3-1 chia hết cho 7.
Do đó a6 -1 chia hết cho 7
P/S: bài toán là trường hợp đặc biệt của định lí nhỏ Phéc-ma : ap-1-1 chia hết cho p với p =7