Tìm số tự nhiên \(n\left(50000\le n\le100000\right)\) để 2290 + 7n là lập phương của một số tự nhiên
@Nguyễn Huy Tú, @Ace Legona, @Toshiro Kiyoshi, Akai Haruma, Hung nguyen,... Help me....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+2x^2y+xy^2\)
\(=x\left(x^2+2xy+y^2\right)\)
\(=x\left(x+y\right)^2\)
\(x^3+2x^2y+xy^2\\ =\left(x^3+x^2y\right)+\left(x^2y+xy^2\right)\\ =x^2\left(x+y\right)+xy\left(x+y\right)\\ =\left(x^2+xy\right)\left(x+y\right)\)
Từng sau nếu tag bạn tag tên dưới câu trả lời nhé, tag thế này không nhận được thông báo đâu .
Bài này tốn sức quá, đau đầu
Lời giải:
Sử dụng \(\sum\) biểu hiện tổng các hoán vị nhé.
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^2}{a\sqrt{(b+2)(c+2)}}+\frac{b^2}{b\sqrt{(c+2)(a+2)}}+\frac{c^2}{c\sqrt{(a+2)(b+2)}}\geq \frac{(a+b+c)^2}{\sum a\sqrt{(b+2)(c+2)}}\)
Tiếp tục Cauchy-Schwarz:
\((\sum a\sqrt{(b+2)(c+2)})^2\leq (ab+2a+bc+2b+ac+2c)(ac+2a+ba+2b+bc+2c)\)
\(\Leftrightarrow \sum a\sqrt{(b+2)(c+2)}\leq (ab+bc+ac+2a+2b+2c)\)
\(\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{ab+bc+ac+2(a+b+c)}\)
Ta sẽ đi chứng minh \(\frac{(a+b+c)^2}{ab+bc+ac+2(a+b+c)}\geq 1\Leftrightarrow (a+b+c)^2\geq ab+bc+ac+2(a+b+c)\)
\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ac\geq 2(a+b+c)\)
\(\Leftrightarrow (a^2+b^2+c^2)+(a+b+c)^2\geq 4(a+b+c)\)
\(\Leftrightarrow 4-abc+(a+b+c)^2\geq 4(a+b+c)\Leftrightarrow (a+b+c-2)^2\geq abc\)
\(\Leftrightarrow a+b+c\geq \sqrt{abc}+2\)
Do \(a^2+b^2+c^2+abc=4\Rightarrow \)
tồn tại $x,y,z>0$ sao cho:\((a,b,c)=\left ( 2\sqrt{\frac{xy}{(z+x)(z+y)}};2\sqrt{\frac{yz}{(x+y)(x+z)}};2\sqrt{\frac{xz}{(y+x)(y+z)}} \right )\)
Khi đó , thực hiện vài bước rút gọn, BĐT cần chứng minh chuyển về:
\(\sum \sqrt{xy(x+y)}\geq \sqrt{2xyz}+\sqrt{(x+y)(y+z)(x+z)}\)
Bình phương hai vế:
\(\Leftrightarrow \sum xy(x+y)+2\sqrt{xy^2z(x+y)(y+z)}\geq 2xyz+\prod (x+y)+2\sqrt{2xyz(x+y)(y+z)(x+z)}\)
\(\Leftrightarrow \sum\sqrt{xy^2z(x+y)(y+z)}\geq 2xyz+\sqrt{2xyz(x+y)(y+z)(x+z)}\)
\(\Leftrightarrow \sum \sqrt{y(y+x)(y+z)}\geq 2\sqrt{xyz}+\sqrt{2(x+y)(y+z)(x+z)}\) \((\star)\)
Đặt biểu thức vế trái là $A$
\(A^2=\sum y(y+x)(y+z)+2\sum\sqrt{[y(y+x)(y+z)][x(x+y)(x+z)]}\)
\(A^2=\sum x^3+\sum xy(x+y)+3xyz+2\sum \sqrt{[(x^2(x+y+z)+xyz][y^2(x+y+z)+xyz]}\)
Áp dụng BĐT C-S : \([x^2(x+y+z)+xyz][y^2(x+y+z)+xyz]\geq [xy(x+y+z)+xyz]^2\)
\(\Rightarrow A^2\geq \sum x^3+\sum xy(x+y)+3xyz+2\sum [xy(x+y+z)+xyz]\)
\(\Leftrightarrow A^2\geq \sum x^3+3\sum xy(x+y)+15xyz\)
Theo BĐT Schur: \(\sum x^3+3xyz\geq \sum xy(x+y)\)
\(\Rightarrow A^2\geq 4\sum xy(x+y)+12xyz=4[\sum xy(x+y)+3xyz]=4(x+y+z)(xy+yz+xz)\)
\(\Leftrightarrow A\geq 2\sqrt{(x+y+z)(xy+yz+xz)}\)
Ta cần chứng minh \(2\sqrt{(x+y+z)(xy+yz+xz)}\geq 2\sqrt{xyz}+\sqrt{2(x+y)(y+z)(x+z)}\) (1)
Đặt \(\sqrt{(x+y+z)(xy+yz+xz)}=t\), bằng AM-GM dễ thấy \(t^2\geq 9xyz\)
\((1)\Leftrightarrow 2t\geq 2\sqrt{xyz}+\sqrt{2(t^2-xyz)}\)
\(\Leftrightarrow 4t^2\geq 4xyz+2(t^2-xyz)+4\sqrt{2xyz(t^2-xyz)}\)
\(\Leftrightarrow t^2\geq xyz+2\sqrt{2xyz(t^2-xyz)}\) (2)
Áp dụng AM-GM: \(2\sqrt{xyz(t^2-xyz)}=\sqrt{8xyz(t^2-xyz)}\leq \frac{8xyz+t^2-xyz}{2}=\frac{7}{2}xyz+\frac{t^2}{2}\)
Và \(xyz\leq \frac{t^2}{9}\)
\(\Rightarrow xyz+2\sqrt{2xyz(t^2-xyz)}\leq t^2\)
Do đó (2) đúng kéo theo (1) đúng kéo theo (*) đúng nên ta có đpcm.
Dấu bằng xảy ra khi $a=b=c=1$
a, \(4x^3y^2-8x^2y^3+12x^3y^4\)
\(=4x^2y^2\left(x-2y+3xy^2\right)\)
b, \(x\left(y-z\right)+2\left(z-y\right)\)
\(=x\left(y-z\right)-2\left(y-z\right)\)
\(=\left(y-z\right)\left(x-2\right)\)
c, \(\left(x+y\right)^2-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-2\right)\)
d, \(x\left(2-x\right)^2-\left(2-x\right)^3\)
\(=\left(2-x\right)^2\left(x-2-x\right)=-2\left(x-2\right)^2\)
a, \(4x^3y^2-8x^2y^3+12x^3y^4\)
\(=4x^2y^2\left(x-2y+3xy^2\right)\)
b, \(x\left(y-z\right)+2\left(z-y\right)\)
\(=\left(x-2\right)\left(y-z\right)\)
c, \(\left(x+y\right)^2-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-2\right)\)
d, \(x\left(2-x\right)^2-\left(2-x\right)^3\)
\(=\left(2-x\right)^2\left(x-2+x\right)\)
\(=2\left(x-2\right)^2\left(x-1\right)\)
Akio Kioto Juka t lười giải hình lắm. Đừng tag t vô hình làm gì.
Lời giải:
Đặt \(2290+7n=k^3\)
Vì \(50000\leq n\leq 100000\Rightarrow 352290\leq k^3\leq 702290\)
\(\Rightarrow 71\leq k\leq 88\)
Ta thấy \(7n+2290\equiv 1\pmod 7\Rightarrow k^3\equiv 1\pmod 7\)
Xét modulo \(7\) cho $k$ ta thu được \(k\equiv 1, 2,4\pmod 7\)
TH1: \(k=7t+1\Rightarrow 71\leq 7t+1\leq 88\Leftrightarrow 10\leq t\leq 12\)
Thay \(t=10,11,12\) ta thu được \(n\in\left\{50803;67466;87405\right\}\)
TH2: \(k=7t+2\Rightarrow 71\leq 7t+2\leq 88\Rightarrow 10\leq t\leq 12\)
Thay \(t=10,11,12\) ta thu được \(n\in\left\{52994;70107;90538\right\}\)
TH3: \(k=7t+4\Rightarrow 71\leq 7t+4\leq 88\Rightarrow 10\leq t\leq 12\)
Thay \(t=10,11,12\) ta thu được \(n\in\left\{57562;75593;97026\right\}\)
Ta có:
\(50000\le n\le100000\)
\(\Leftrightarrow350000\le7n\le700000\)
\(\Leftrightarrow352290\le2290+7n\le702290\)
Gọi số lập phương đó là \(a^3\left(a\in N\right)\)
\(\Rightarrow352290\le a^3\le702290\)
\(\Leftrightarrow71\le a\le88\)
Bên cạnh đó ta có:
\(2290+7n=a^3\)
\(\Leftrightarrow n=\dfrac{a^3-2290}{7}=-327+\dfrac{a^3-1}{7}=\dfrac{\left(a-1\right)\left(a^2+a+1\right)}{7}-327\)
Giờ tìm a sao cho thỏa \(\left[{}\begin{matrix}a-1⋮7\\a^2+a+1⋮7\end{matrix}\right.\)và \(71\le a\le88\)là xong