K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2019

Lời giải:

Ta xét các TH sau:

TH1: $n$ chia hết cho $3$: $n=3k$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k}+18.3k-28\)

Ta thấy:

\(10^3\equiv 1\pmod {27}\Rightarrow 10^{3k}\equiv 1^k\equiv 1\pmod {27}\)

\(18.3k=27.2k\equiv 0\pmod {27}\)

\(28\equiv 1\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 1+0-1\equiv 0\pmod {27}(1)\)

TH2: $n$ chia 3 dư $1$: $n=3k+1$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k+1}+18(3k+1)-28=10^{3k}.10+54k-10\)

Ta thấy:

\(10^{3k}\equiv 1\pmod {27} \) (cmt) \(\Rightarrow 10^{3k}.10\equiv 10\pmod {27}\)

\(54k\equiv 0\pmod {27}\)

\(10\equiv 10\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 10-0-10\equiv 0\pmod {27}(2)\)

TH3: $n$ chia 3 dư $2$: $n=3k+2$

\(10^n+18n-28=10^{3k}.100+54k+8\equiv 100+0+8\equiv 0\pmod {27}(3)\)

Từ (1);(2);(3) suy ra $10^n+18n-28$ chia hết cho $27$ với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
27 tháng 8 2019

Lời giải:

Ta xét các TH sau:

TH1: $n$ chia hết cho $3$: $n=3k$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k}+18.3k-28\)

Ta thấy:

\(10^3\equiv 1\pmod {27}\Rightarrow 10^{3k}\equiv 1^k\equiv 1\pmod {27}\)

\(18.3k=27.2k\equiv 0\pmod {27}\)

\(28\equiv 1\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 1+0-1\equiv 0\pmod {27}(1)\)

TH2: $n$ chia 3 dư $1$: $n=3k+1$ với $k\in\mathbb{N}$

\(10^n+18n-28=10^{3k+1}+18(3k+1)-28=10^{3k}.10+54k-10\)

Ta thấy:

\(10^{3k}\equiv 1\pmod {27} \) (cmt) \(\Rightarrow 10^{3k}.10\equiv 10\pmod {27}\)

\(54k\equiv 0\pmod {27}\)

\(10\equiv 10\pmod {27}\)

\(\Rightarrow 10^n+18n-28\equiv 10-0-10\equiv 0\pmod {27}(2)\)

TH3: $n$ chia 3 dư $2$: $n=3k+2$

\(10^n+18n-28=10^{3k}.100+54k+8\equiv 100+0+8\equiv 0\pmod {27}(3)\)

Từ (1);(2);(3) suy ra $10^n+18n-28$ chia hết cho $27$ với mọi số tự nhiên $n$

12 tháng 11 2015

C = 10n + 18n -28

+với n =1 => C =10+18 -28 =0 chia  hết cho 9

+ Giả sử C chia hết cho 9  với  n-1

  => C =10n-1 + 18(n-1) -28 chia hết cho 9

+ Ta chứng minh C  chia hết cho 9 đúng với n

C= [10n +18n -28 = 10.10n-1 +18(n -1).10  -280 ] +(162n +432)

  =10[10n-1 + 18(n-1) -28 ] +9(18n+48) chia hết cho 9

=> dpcm

17 tháng 10 2015

Ta có: 10^n + 18n - 28 = (10^n - 1) + 18n-27 = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n)-27 (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3

=> A chia hết cho 3

=> 9.A chia hết cho 27

=>9.A-27 chia hết cho 27

=>10^n + 18n -28 chia hết cho 27

=>ĐPCM

17 tháng 10 2015

mk cx k giải đk bài này 

7 tháng 12 2015

Câu hỏi tương tự          

14 tháng 12 2021

\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)

Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)

14 tháng 12 2021

Câu c đâu chị

21 tháng 4 2016

ai là phan của hậu duệ mặt thì k vào đây

21 tháng 4 2016

@gy.gjgjgj Tại s v bạn???