K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 9 2017

Lời giải:

Biến đổi:

\((a+b)(b+c)(c+a)-2abc=ab(a+b)+bc(b+c)+ca(c+a)\)

\(=ab(a+b+c)+bc(a+b+c)+ac(a+b+c)-3abc\)

\(=(a+b+c)(ab+bc+ac)-3abc\)

Ta thấy , nếu cả 3 số \(a,b,c\) đều lẻ, thì \(a+b+c\) lẻ, do đó \(a+b+c\not\vdots 6\) (không t/m điều kiện đề bài)

Do đó, tồn tại ít nhất một số trong 3 số $a,b,c$ là số chẵn

Kéo theo \(3abc\vdots 6\)

Mà \(a+b+c\vdots 6\Rightarrow (a+b+c)(ab+bc+ac)\vdots 6\)

\(\Rightarrow (a+b+c)(ab+bc+ac)-3abc\vdots 6\)

\(\Leftrightarrow (a+b)(b+c)(c+a)-2abc\vdots 6\) (đpcm)

29 tháng 10 2016

b) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-2abc\\ =abc+ac^2+a^2b+a^2c+cb^2+ab^2+bc^2+abc-2abc\\ =ac^2+a^2b+a^2c+cb^2+ab^2+bc^2\)

\(=ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)=ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)-3abc\\ \)\(=\left(a+b+c\right)\left(ab+ac+bc\right)-3abc\)

Vì a+b+c chia hết cho 6 => (a+b+c)(ab+ac+bc) chia hết cho 6

Vì a+b+c chia hết cho 6 nên nó tồn tại ít nhất 1 số chẵn => 3abc chia hết cho 6

=> (a+b)(b+c)(c+a)-2abc chia hết cho6

30 tháng 10 2016

đăng 2 câu giải 1 câu

Bài này cần dùng một ít kiến thức của lớp 8, bạn có thể tìm hiểu thêm.

undefined

24 tháng 11 2019

+ Theo bài, ta có: a+b+c chia hết cho 6

   => a+b+c=6

+ M=(a+b)(b+c)(c+a)-2abc

   M=(6-c)(6-a)(6-b)-2abc

   M=(12-6a-6c+ac)(6-b)-2abc

   M=72-12b-12a+6ab-12c+6cb+6ac-abc-2abc

   M=72-12(a+b+c)+6(ab+cb+ac)-3abc

+ có:72 chia hết cho 6

        12 chia hết cho 6

        6 chia hết cho 6

    => M chia hết cho 6

  Vậy...

25 tháng 10 2020

a3 +5.a

(1.a)3+5.a=13.a3+5a=Áp dụng ta có 1 nhân với số nào cũng bằng 1 vậy:

13.a3 =1

Vậy a=6 

KIỂM TRA:

63+5.6=216+30=246 :6=41 {\displaystyle a~\vdots ~b} 

Đúng r ó .Ú khoong bt cách giải đúng chuawww nếu chưa cho bò sữa xin lỗi nha .bye ú đi đây!!!

Hokkk toóttttt