K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

* ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)\(100\) số hạng

\(100⋮4\)\(100⋮̸3\)

ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)

\(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\) (vì \(100⋮4\) )

\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+2^{97}\left(1+3+3^2+3^3\right)\)

\(=3\left(1+3+9+27\right)+3^5\left(1+3+9+27\right)+...+2^{97}\left(1+3+9+27\right)\)

\(=3.40+3^5.40+...+3^{97}.40=40.\left(3+3^5+...+3^{97}\right)⋮40;10;4\)

vậy \(C\) chia hết cho \(40;10và4\) (1)

ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)

\(=3^1+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\) (vì \(100⋮̸3\) )

\(=3+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+...+2^{98}\left(1+3+3^2\right)\)

\(=3+3^2\left(1+3+9\right)+3^5\left(1+3+9\right)+...+2^{98}\left(1+3+9\right)\)

\(=3+3^2.13+3^5.13+...+3^{98}.13=3+13.\left(3^2+3^5+...+3^{98}\right)\)

ta có : \(13.\left(3^2+3^5+...+3^{98}\right)⋮13\) nhưng \(3⋮̸13\)

\(\Rightarrow\) \(C\) không chia hết cho \(13\)\(3< 13\) \(\Rightarrow\) \(3\) là số dư khi chia \(C\) cho \(13\) (2)

từ (1) và (2) \(\Rightarrow\) (ĐPCM)

18 tháng 10 2015

A=(2+22+23+24+24)+...+(297+298+299+2100)

A=31+25(2+22+23+24+24)+...+297(2+22+23+24+24)

A=31(1+25+...+297)

=>2+2^2+2^3+.......+2^100) chia hết  cho 31

 

11 tháng 5 2016

ghép 2 số liên tiếp lại với nhau

11 tháng 5 2016

B=3+32+33+34+...+320 chia hết cho 12

B=(3+32)+(33+34)+...+(319+320) chia hết cho 12

B=12      +32.(3+32)+...+318.(3+32) chia hết cho 12

B=12+32.12+...+318.20 chia hết cho 12

B=12.(1+32+..+18) chia hết cho 12 (đpcm)

k nha

5 tháng 4 2016

 ĐẶt A=3+3^2+3^3+....+3^100 
Chia A thành từng nhóm 4 số (vì A có 100 số) ta được 25 nhóm 
A= 3(1+3+3^2+3^3) +3^5(1+3+3^2+3^3)+...... 
+3^97(1+3+3^2+3^3) 
A=3.40 +3^5.40+.....+3^97.40 
Vậy A chia hết cho 40. 

5 tháng 4 2016

C=\(3+3^2+3^3+3^4+...+3^{100}\)

\(3\times\left(1+3+3^2+3^3+...+3^{99}\right)\)

\(3\times\left[\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\right]\)

\(3\times\left(40+3^4\times40+...+3^{96}\times40\right)\)

\(3\times40\times\left(1+3^4+...+3^{96}\right)\)chia het cho 40

=> C chia het cho 40

21 tháng 5 2015

Cậu search mạng chứ gì

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

21 tháng 5 2015

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

21 tháng 9 2017

* ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)\(100\) số hạng

\(100⋮4\)\(100⋮̸3\)

ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)

\(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\) (vì \(100⋮4\) )

\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+2^{97}\left(1+3+3^2+3^3\right)\)

\(=3\left(1+3+9+27\right)+3^5\left(1+3+9+27\right)+...+2^{97}\left(1+3+9+27\right)\)

\(=3.40+3^5.40+...+3^{97}.40=40.\left(3+3^5+...+3^{97}\right)⋮40;10;4\)

vậy \(C\) chia hết cho \(40;10và4\) (1)

ta có : \(C=3^1+3^2+3^3+...+3^{99}+3^{100}\)

\(=3^1+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\) (vì \(100⋮̸3\) )

\(=3+3^2\left(1+3+3^2\right)+3^5\left(1+3+3^2\right)+...+2^{98}\left(1+3+3^2\right)\)

\(=3+3^2\left(1+3+9\right)+3^5\left(1+3+9\right)+...+2^{98}\left(1+3+9\right)\)

\(=3+3^2.13+3^5.13+...+3^{98}.13=3+13.\left(3^2+3^5+...+3^{98}\right)\)

ta có : \(13.\left(3^2+3^5+...+3^{98}\right)⋮13\) nhưng \(3⋮̸13\)

\(\Rightarrow\) \(C\) không chia hết cho \(13\)\(3< 13\) \(\Rightarrow\) \(3\) là số dư khi chia \(C\) cho \(13\) (2)

từ (1) và (2) \(\Rightarrow\) (ĐPCM)

8 tháng 11 2023

a) Đặt A = \(6^5.5-3^5\)

\(=\left(2.3\right)^5.5-3^5\)

\(=2^5.3^5.5-3^5\)

\(=3^5.\left(2^5.5-1\right)\)

\(=3^5.\left(32.5-1\right)\)

\(=3^5.159\)

\(=3^5.3.53⋮53\)

Vậy \(A⋮53\)

b) Đặt \(B=2+2^2+2^3+...+2^{120}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{119}.3\)

\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(B⋮3\)

\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{118}.7\)

\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)

Vậy \(B⋮7\)

\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)

\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+2^6.31+...+2^{116}.31\)

\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)

Vậy \(B⋮31\)

\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)

\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)

\(=2.255+2^9.255+...+2^{113}.255\)

\(=255.\left(2+2^9+...+2^{113}\right)\)

\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)

Vậy \(B⋮17\)

8 tháng 11 2023

c) Đặt C = \(3^{4n+1}+2^{4n+1}\)

Ta có:

\(3^{4n+1}=\left(3^4\right)^n.3\)

\(2^{4n}=\left(2^4\right)^n.2\)

\(3^4\equiv1\left(mod10\right)\)

\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)

\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)

\(2^4\equiv6\left(mod10\right)\)

\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)

\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)

\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)

\(\Rightarrow\) Chữ số tận cùng của C là 5

\(\Rightarrow C⋮5\)

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

3 tháng 8 2016

A=5+52+...+599+5100

=(5+52)+...+(599+5100)

=5.(1+5)+...+599.(1+5)

=5.6+...+599.6

=6.(5+...+599) chia hết cho 6 (dpcm)

Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi

Chúc bạn học giỏi nha!!

1 tháng 1 2021

\(A=5+5^2+5^3+...+5^{100}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{99}.6\)

\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)

\(B=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+...+2^{96}.31\)

\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)

\(C=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)

\(=3.4+3^3.4+...+3^{59}.4\)

\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)

\(C=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=3.13+...+3^{58}.13\)

\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)