GPT: \(x^4-24x-32=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)=24x^2\)
<=>\(\left(x^2-13x+30\right)\left(x^2-11x+30\right)=24x^2\)
Đặt x2-11x+30=t => (t-2x).t=24x2 <=> t2-2xt=24x2 <=> t2-2xt-24x2=0 <=> 4xt-24x2+t2-6xt=0
<=>4x(t-6x)+t(t-6x)=0<=>(t-6x)(4x+t)=0<=>t-6x=0 hoặc 4x+t=0 <=>x2-17x+30=0 hoặc x2-7x+30=0
+)x2-17x+30=0 <=> x2-15x-2x+30=0 <=> x(x-15)-2(x-15)=0 <=> (x-2)(x-5)=0
<=>x-2=0 hoặc x-15=0 <=>x=2 hoặc x=15
+)x2-7x+30=0 <=> \(x^2-2.\frac{7}{2}.x+\frac{49}{4}+\frac{71}{4}=0\Leftrightarrow\left(x-\frac{7}{2}\right)^2+\frac{71}{4}=0\)
Vì \(\left(x-\frac{7}{2}\right)^2\ge0\Rightarrow\left(x-\frac{7}{2}\right)^2+\frac{71}{4}\ge\frac{71}{4}>0\) => vô nghiệm
Vậy x=2 hoặc x=15
a) \(x^4-24x+32=0\)
\(\Leftrightarrow x^4-2x^3+2x^3-4x^2+4x^2-8x-16x+32=0\)
\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)+4x\left(x-2\right)-16\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2+4x-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+2x^2+4x-16=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x\approx1,62\end{matrix}\right.\)
b) \(x^4-8x\sqrt{2}+12=0\)
\(\Leftrightarrow x^4-\sqrt{2}x^3+\sqrt{2}x^3-2x^2+2x^2-2\sqrt{2}x-6\sqrt{2}x+12=0\)
\(\Leftrightarrow x^3\left(x-\sqrt{2}\right)+\sqrt{2}x^2\left(x-\sqrt{2}\right)+2x\left(x-\sqrt{2}\right)-6\sqrt{2}\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x^3+\sqrt{2}x^2+2x-6\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x\approx1,4142135...\end{matrix}\right.\)
\(A=\dfrac{4\left(x^2-4x+4\right)+\left(x^2-8x+16\right)}{x^2-4x+4}=4+\left(\dfrac{x-4}{x-2}\right)^2\ge4\)
\(A_{min}=4\) khi \(x=4\) (A max ko tồn tại)
\(B=\dfrac{6\left(x^2+2x+1\right)+\left(4x^2+12x+9\right)}{x^2+2x+1}=6+\left(\dfrac{2x+3}{x+1}\right)^2\ge6\)
\(B_{min}=6\) khi \(x=-\dfrac{3}{2}\)
B max ko tồn tại
ĐKXĐ: ...
\(A=\dfrac{3x^2-72x+96}{3\left(x^2-4x+4\right)}=\dfrac{28\left(x^2-4x+4\right)-\left(25x^2-40x+16\right)}{3\left(x^2-4x+4\right)}=\dfrac{28}{3}-\dfrac{1}{3}\left(\dfrac{5x-4}{x-2}\right)^2\le\dfrac{28}{3}\)
\(A_{max}=\dfrac{28}{3}\) khi \(5x-4=0\Leftrightarrow x=\dfrac{4}{5}\)
Bài giải
Cộng cả 2 vế với 4x^2+4
>>x^4+4x^2+4=4x^2+24x+36
>>(x^2+2)^2=4(x+3)^2
>>x^2+2=2(x+3)(1) hoặc x^2+2=-2(x+3)(2)
(1)>>x^2-2x-4=0>>x=1(+-)căn 5
(2)>>x^2+2x+8=0(vô nghiệm)
~Hok tốt~
Cộng cả 2 vế với 4x^2+4
>>x^4+4x^2+4=4x^2+24x+36
>>(x^2+2)^2=4(x+3)^2
>>x^2+2=2(x+3)(1) hoặc x^2+2=-2(x+3)(2)
(1)>>x^2-2x-4=0>>x=1(+-)căn 5
(2)>>x^2+2x+8=0(vô nghiệm
\(x^4-24x-32=0\)
\(\Leftrightarrow x^4=24x+32\)
\(\Leftrightarrow x^4+4x^2+4=4x^2+24x+36\)
\(\Leftrightarrow\left(x^2+2\right)^2=4.\left(x+3\right)^2\)
\(\Leftrightarrow\left(x^2+2\right)^2-4.\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x^2+2-2x-6\right)\left(x^2+2+2x+6\right)=0\)
\(\Leftrightarrow x^2-2x-4=0\text{ hoặc }x^2+2x+8\)
\(\cdot x^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-5=0\)
\(\Leftrightarrow\left(x-1+\sqrt{5}\right)\left(x-1-\sqrt{5}\right)=0\)
\(\Leftrightarrow x=1-\sqrt{5}\text{ hoặc }x=1+\sqrt{5}\)
\(\cdot x^2+2x+8=0\left(\text{vô nghiệm}\right)\)
Vậy x=...........