K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2020

a, Gọi điểm cố định mà \(\left(d\right)\) luôn đi qua là \(\left(x_0;y_0\right)\)

\(\Rightarrow y_0=mx_0+m-1,\forall m\)

\(\Leftrightarrow m\left(x_0+1\right)-y_0-1=0,\forall m\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\-y_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-1\end{matrix}\right.\Rightarrow\left(-1;-1\right)\)

Vậy \(\left(d\right)\) luôn đi qua \(\left(-1;-1\right)\) với mọi giá trị của m

b, Gọi A, B lần lượt là giao điểm của \(\left(d\right)\) với trục tung và trục hoành

TH1: \(m=0\Rightarrow y=m-1\) là hàm hằng \(\Rightarrow\) loại

TH2: \(m\ne0\)

\(x=0\Rightarrow y=m-1\Rightarrow OA=\left|m-1\right|\)

\(y=0\Rightarrow x=\frac{1-m}{m}\Rightarrow OB=\left|\frac{1-m}{m}\right|\)

\(S_{\Delta OAB}=\frac{1}{2}OA.OB=\frac{1}{2}\left|m-1\right|\left|\frac{1-m}{m}\right|=\frac{\left(m-1\right)^2}{2\left|m\right|}=2\)

\(\Rightarrow m^2-2m+1=4\left|m\right|\)

Nếu \(m>0\Rightarrow m^2-6m+1=0\Leftrightarrow\left[{}\begin{matrix}m=3+2\sqrt{2}\\m=3-2\sqrt{2}\end{matrix}\right.\)

Nếu \(m< 0\Rightarrow m^2+2m+1=0\Leftrightarrow\left(m+1\right)^2=0\Leftrightarrow m=-1\)

Vậy ...

25 tháng 1 2022

1, Ta có : y = mx - 2m - 1 

<=> m ( x - 2 ) - 1 - y = 0 

<=> m(x - 2) - (y+1) = 0

Dấu ''='' xảy ra khi x = 2 ; y = -1 

Vậy (d) luôn đi qua A(2;-1) 

2, (d) : y = mx - 2m - 1

Cho x = 0 => y = -2m - 1 

=> d cắt Oy tại A(0;-2m-1) 

=> OA = \(\left|-2m-1\right|\)

Cho y = 0 => x = \(\dfrac{2m+1}{m}\)

=> d cắt trục Ox tại B(2m+1/m;0) 

=> OB = \(\left|\dfrac{2m+1}{m}\right|\)

Ta có : \(S_{OAB}=\dfrac{1}{2}\left|\dfrac{2m+1}{m}.\left(-2m-1\right)\right|=2\)

\(\Leftrightarrow\left|-\dfrac{\left(2m+1\right)^2}{m}\right|=4\Leftrightarrow\left[{}\begin{matrix}-\dfrac{\left(2m+1\right)^2}{m}=4\\-\dfrac{\left(2m+1\right)^2}{m}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4m^2+8m+1=0\\4m^2+1=0\left(voli\right)\end{matrix}\right.\)

<=> m = \(\dfrac{-2\pm\sqrt{3}}{2}\)

 

 

25 tháng 1 2022

cảm ơn anh nhiều, 2 bài rồi anh vẫn giúp em

7 tháng 12 2016

Toán lớp 9.

2: Tọa độ điểm A là:

\(\left\{{}\begin{matrix}y_A=0\\mx=2m+1\end{matrix}\right.\Leftrightarrow A\left(\dfrac{2m+1}{m};0\right)\)

Tọa độ điểm B là:

\(\left\{{}\begin{matrix}x=0\\y=-2m-1\end{matrix}\right.\Leftrightarrow B\left(-2m-1;0\right)\)

Theo đề, ta có: \(\left|\dfrac{4m^2+4m+1}{m}\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}4m^2+4m+1=4m\\4m^2+4m+1=-4m\end{matrix}\right.\Leftrightarrow4m^2+8m+1=0\)

\(\Leftrightarrow4m^2+8m+4m-3=0\)

\(\Leftrightarrow\left(2m+2\right)^2=3\)

hay \(m\in\left\{\dfrac{\sqrt{3}-2}{2};\dfrac{-\sqrt{3}-2}{2}\right\}\)

 

28 tháng 5 2019

Đáp án B.

Phương trình đường thẳng d : y = m x + 2 + 2 .

Phương trình hoành độ giao điểm của  và d:

  2 x + 1 x − 1 = m x + 2 + 2 ⇒ m x 2 + m x − 2 m − 3 = 0 (*).

Để  (H) và d cắt nhau tại hai điểm phân biệt thì (*) phải có hai nghiệm phân biệt   ⇔ m ≠ 0 Δ > 0 ⇔ m ≠ 0 9 m 2 + 12 > 0 (**). Gọi  là hai nghiệm của (*).

Khi đó M = x 1 ; m x 1 + 2 + 2 , N = x 2 ; m x 2 + 2 + 2 .

Hai cạnh của hình chữ nhật tạo bởi bốn đường thẳng như đã cho trong bài là x 2 − x 1  và  m x 2 − x 1   . Hình chữ nhật này là hình vuông khi và chỉ khi m x 2 − x 1 = x 2 − x 1 ⇔ m = 1 ⇔ m = ± 1 . Ta thấy chỉ có M=1 thỏa mãn (**).

Vậy chỉ có một giá trị của m thỏa mãn yêu cầu bài toán. Chọn đáp án B.

15 tháng 12 2021

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)