K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

Ok!

A B C K

Ta có: \(\dfrac{AK}{KC}=2.\left(\dfrac{AB}{BC}\right)^2-1\)

\(\Leftrightarrow\dfrac{AK}{KC}+1=2.\dfrac{AB^2}{BC^2}\)

\(\Leftrightarrow\dfrac{AK+KC}{KC}=2.\dfrac{AB.AC}{BC^2}\)

\(\Leftrightarrow\dfrac{AC}{KC}=\dfrac{2AB.AC}{BC^2}\) \(\Leftrightarrow\dfrac{1}{KC}=\dfrac{2AB}{BC^2}\)

\(\Leftrightarrow BC^2=KC.2AB\)

\(\Leftrightarrow BK^2+KC^2=2AB.KC\)

\(\Leftrightarrow AB^2-AK^2+KC^2=2AB.KC\)

\(\Leftrightarrow\left(AB-KC\right)^2=AK^2\)

\(\Leftrightarrow AB-KC=AK\)

\(\Leftrightarrow AB=AK+KC=AC\) ( Luôn đúng)

\(\Rightarrowđpcm\)

P/s: Gợi ý câu a:Từ H kẻ đt // AH cắt BC tại I Áp dụng hệ thức 4

20 tháng 9 2017

@Toshiro Kiyoshi

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc với BC

d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

góc HAM=góc KAM

Do đó: ΔAHM=ΔAKM

=>AH=AK

1 tháng 8 2015

1) 

Ta có tam giác ABC cân tại A    =>  góc B = góc C = (180 - 50) : 2 = 65 độ

2) 

Ta có: tam giác ABC cân tại A  => góc B = góc C = (180 - góc A) : 2 

mà  góc B = A + 300 

=> (1800 - góc A) : 2 = Â + 300

=> \(\frac{180}{2}-\frac{Â}{2}=Â+30^0\)

=> 900 - Â/2 = Â + 300

=> 900- 300 = Â + Â/2

=> \(60^0=\frac{3Â}{2}\Rightarrow3Â=60\cdot2=120\RightarrowÂ=\frac{120}{3}=40^0\)

=> góc B = góc C = (180 - Â) : 2 = (180 - 40) : 2 = 70 độ

14 tháng 3 2021

Sửa đề: Tam giác ABC cân tại A, góc A bằng 100 độ. BC=8cm, AC=10cm. Phía ngoài tam giác ABC vẽ tam giác ABD cân tại D, góc ADB bằng 140 độ. Tính chu vi tam giác ABD.

14 tháng 3 2021

undefined

6 tháng 12 2021

Kẻ  AH \(\perp\) BC.

Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).

=> AH là trung tuyến (Tính chất các đường trong tam giác cân).

=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.

Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.

Mà ^BAD = 36o (gt).

=> ^ABC = ^BAD = 36o.

Mà 2 góc này ở vị trí so le trong.

=> AD // BC (dhnb).

Mà AH \(\perp\) BC (cách vẽ).

=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.

Kẻ MH // DB; M \(\in\) AD. 

Xét tứ giác DMHB có: 

+ MH // DB (cách vẽ).

+ MD // HB (do AD // BC).

=> Tứ giác DMHB là hình bình hành (dhnb). 

=> MH = DB và MD = BH (Tính chất hình bình hành).

Ta có: AD = MD + AM.

Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).

=> AM = b - \(\dfrac{1}{2}\)a.

Xét tam giác AHB vuông tại H có:

AB2 = AH+ BH2 (Định lý Py ta go).

Thay: b2 = AH+ ( \(\dfrac{1}{2}\)a)2.

<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.

<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).

Xét tam giác MAH vuông tại A (^MAH = 90o) có:

\(MH^2=AM^2+AH^2\) (Định lý Py ta go).

Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.

 MH2 = b2  - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.

MH2 = 2b2 - ab.

MH = \(\sqrt{2b^2-ab}\).

Mà MH = BD (cmt).

=> BD = \(\sqrt{2b^2-ab}\).

Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.