cho a,b,c>0/ chứng minh rằng
\(A=\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\ge6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề có sai 1 chút nha bạn :
đề phải là \(a;b;c>0\) : \(CMR\) \(\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\ge6\) mới đúng
giải
đặt : \(P=\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\)
ta có : \(P=\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\)
\(P=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{9b}{a+c}+9\right)+\left(\dfrac{16c}{a+b}+16\right)-26\)
\(P=\left(\dfrac{a+b+c}{b+c}\right)+\left(\dfrac{9b+9a+9c}{a+c}\right)+\left(\dfrac{16c+16a+16b}{a+b}\right)-26\)\(P=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)-26\)
\(P=\dfrac{1}{2}\left(\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)-26\)
áp dụng bất đẳng thức Bunhiacopxki
ta có :
\(\left(\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)\ge\left(\sqrt{1}+\sqrt{9}+\sqrt{16}\right)^2\)
\(\Leftrightarrow\left(\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)\ge64\)
\(\Leftrightarrow\) \(P=\dfrac{1}{2}\left(\left(b+c\right)+\left(a+c\right)+\left(a+b\right)\right)\left(\dfrac{1}{b+c}+\dfrac{9}{a+c}+\dfrac{16}{a+b}\right)-26\ge\dfrac{1}{2}.64-26\)
\(\Leftrightarrow P\ge6\)vậy \(P=\dfrac{a}{b+c}+\dfrac{9b}{a+c}+\dfrac{16c}{a+b}\ge6\) (đpcm)
dấu "=" xảy ra khi \(b+c=\dfrac{a+c}{9}=\dfrac{a+b}{16}\)
Mình đặt bằng A cho dễ tính nha
A=a/b+a/c+b/c+b/a+c/b+c/a
Áp dụng bst cosi ta có:
a/b+b/a\(\ge\)2√(a.b/b.a)=2
Tươn tự ta chứng minh được
a/c+c/a\(\ge\)2
b/c+c/b\(\ge\)2
Suy ra
A\(\ge\)6
Áp dụng bất đẳng thức Bunyakovsky
\(\Rightarrow\sqrt{\left(\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}\right)\left[\left(\sqrt{2}\right)^2+\left(3\sqrt{2}\right)^2+2^2\right]}\ge\left(\sqrt{\dfrac{4}{a}+9b+ca}\right)^2\)
\(\Leftrightarrow2\sqrt{6}\sqrt{\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}}\ge\dfrac{4}{a}+9b+ac\)
Tương tự ta có \(\left\{{}\begin{matrix}2\sqrt{6}\sqrt{\left(\dfrac{8}{b^2}+\dfrac{9c^2}{2}+\dfrac{a^2b^2}{4}\right)}\ge\dfrac{4}{b}+9c+ab\\2\sqrt{6}\sqrt{\left(\dfrac{8}{c^2}+\dfrac{9a^2}{2}+\dfrac{b^2c^2}{4}\right)}\ge\dfrac{4}{c}+9a+bc\end{matrix}\right.\)
\(\Rightarrow2\sqrt{6}S\ge\dfrac{4}{a}+9a+\dfrac{4}{b}+9b+\dfrac{4}{c}+9c+ab+bc+ac\)
\(\Leftrightarrow2\sqrt{6}S\ge\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+a\ge2\sqrt{4}=4\\\dfrac{4}{b}+b\ge2\sqrt{4}=4\\\dfrac{4}{c}+c\ge2\sqrt{4}=4\end{matrix}\right.\)
\(\Rightarrow\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\ge12+8a+8b+8c+ab+bc+ac\)
\(\Rightarrow2\sqrt{6}S\ge12+8a+8b+8c+ab+bc+ac\)
\(\Leftrightarrow2\sqrt{6}S\ge12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow2a+bc\ge2\sqrt{2abc}\)
Tượng tự ta có \(2b+ac\ge2\sqrt{2abc}\) ; \(2c+ab\ge2\sqrt{2abc}\)
\(\Rightarrow12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)
\(\Rightarrow2\sqrt{6}S\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)
Theo đề bài ta có \(a+b+c+\sqrt{2abc}\ge10\)
\(\Rightarrow6\left(a+b+c+\sqrt{2abc}\right)+12\ge72\)
\(\Rightarrow S\ge\dfrac{72}{2\sqrt{6}}=6\sqrt{6}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=2\)
Bài 3:
Áp dụng bất đẳng thức AM - GM có:
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}\)
\(=2+2+2=6\)
Dấu " = " khi x = y = z = 1
Vậy...
3. Với x,y,z>0 áp dụng BĐT Cauchy ta có
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
\(=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\)
\(\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}=2+2+2=6\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=z=1\)
1. Với a=b=c=0, ta thấy BĐT trên đúng
Với a,b,c>0 áp dụng BĐT Cauchy cho 3 số dương
\(a^3+a^3+b^3\ge3\sqrt[3]{a^3.a^3.b^3}=3\sqrt[3]{a^6b^3}=3a^2b\) (1)
\(b^3+b^3+c^3\ge3\sqrt[3]{b^3.b^3.c^3}=3\sqrt[3]{b^6c^3}=3b^2c\) (2)
\(c^3+c^3+a^3\ge3\sqrt[3]{c^3.c^3.a^3}=3\sqrt[3]{c^6a^3}=3c^2a\) (3)
Cộng (1), (2), (3) vế theo vế:
\(a^3+b^3+c^3\ge a^2b+b^2c+c^2a>\dfrac{a^2b+b^2c+c^2a}{3}\) (vì a,b,c>0)
Do đó BĐT trên đúng \(\forall a,b,c\ge0\)
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+1=\dfrac{a^2}{ab}+\dfrac{b^2}{bc}+\dfrac{c^2}{ca}+\dfrac{b^2}{b^2}\)
\(\ge\dfrac{\left(a+2b+c\right)}{ab+bc+ca+b^2}=\dfrac{\left(a+b\right)^2+2\left(a+b\right)\left(b+c\right)+\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)}\)
\(=\dfrac{\left(a+b\right)}{\left(b+c\right)}+\dfrac{\left(b+c\right)}{a+b}+2\)
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{\left(a+b\right)}{\left(b+c\right)}+\dfrac{\left(b+c\right)}{a+b}+1\)
Đặt \(\dfrac{a}{b}=x;\dfrac{b}{c}=y;\dfrac{c}{a}=z\). Dễ thấy rằng
\(\dfrac{a+c}{b+c}=\dfrac{1+xy}{1+y}=x+\dfrac{1-x}{1+y}\)
Thiếp lập các hệ thức tương tự, bài toán trở về chứng minh với \(xyz=1\) có:
\(\dfrac{x-1}{y+1}+\dfrac{y-1}{z+1}+\dfrac{z-1}{x+1}\ge0\)
\(\Leftrightarrow\left(x^2-1\right)\left(z+1\right)+\left(y^2-1\right)\left(x+1\right)+\left(z^2-1\right)\left(y+1\right)\ge0\)
\(\Leftrightarrow x^2z+z^2y+y^2x+x^2+y^2+z^2\ge x+y+z+3\)
Áp dụng BĐT AM-GM ta có:
\(x^2z+z^2y+y^2x\ge3\sqrt[3]{\left(xyz\right)^3}=3\)
Vậy còn phải chứng minh \(x^2+y^2+z^2\ge x+y+z\)
Điều này đúng vì \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\ge x+y+z\)
Bài 2:
Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\), ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)
Lại áp dụng tương tự ta có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge ab^2c+abc^2+a^2bc\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (2)
Từ (1) và (2) suy ra:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Bài 1:
Áp dụng BĐT Cô -si, ta có:
\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)
\(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\sqrt[3]{\dfrac{b^2}{c^3}.\dfrac{1}{b}.\dfrac{1}{b}}=\dfrac{3}{c}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
Cộng vế theo vế ta được:
\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
p/s: không chắc lắm, có gì sai xót xin giúp đỡ
Link: https://vn.answers.yahoo.com/question/index?qid=20100612215240AA1bp3C