1 người đi bộ trong nửa s đầu đi vs v 1 = 4km / h . Trong s còn lại nửa t đầu , người đó đi vs v2 = 6km / h . T còn lại , người đó đi vs v3 = 8km / h . Tính v trung bình trên cả s
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(v_{tb}=\dfrac{5+4}{2}=4,5\left(\dfrac{km}{h}\right)\)
Tóm tắt:
\(v_1=5km/h\)
\(v_2=4km/h\)
========
\(v_{tb}=?km/h\)
Vận tốc trung bình:
\(v_{tb}=\dfrac{v_1+v_2}{2}=\dfrac{4+5}{2}=4,5\left(km/h\right)\)
ta có:
thời gian người đó đi nửa quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{2v_1}=\frac{S}{12}\)
thời gian người đó quãng đường còn lại là:
\(t_2=\frac{S_2}{v_2}=\frac{S}{2v_2}=\frac{S}{8}\)
vận tốc trung bình của người đó là:
\(v_{tb}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{12}+\frac{S}{8}}=\frac{S}{S\left(\frac{1}{12}+\frac{1}{8}\right)}=\frac{1}{\frac{1}{12}+\frac{1}{8}}=4,8\)
vậy vận tốc trung bình của người đó là 4,8km/h
vận tốc trung bình của người đó trên cả quãng đường là:
\(v_{tb}=\dfrac{\dfrac{t}{2}\left(v_1+v_{tb2}\right)}{t}\Rightarrow30=\dfrac{1}{2}\left(40+v_{tb2}\right)\Rightarrow v_{tb2}=20\left(\dfrac{km}{h}\right)\)
vận tốc trung bình của người đó trên phần đường còn lại là:
\(v_{tb2}=\dfrac{s_2}{\dfrac{s_2}{2}\left(\dfrac{1}{v_2}+\dfrac{1}{v_3}\right)}\Rightarrow20=\dfrac{1}{\dfrac{1}{2}\left(\dfrac{1}{30}+\dfrac{1}{v_3}\right)}\Rightarrow v_3=15\left(\dfrac{km}{h}\right)\)
vậy ...
có vẻ hơi thiếu dữ kiện rồi, bạn phải cho quãng đường hoặc thời gian của cả 2 đoạn đường thì mới tính được
Gọi s là chiều dài nửa quãng đường mà người đi xe đạp phải đi.
Như vậy, thời gian đi hết nửa quãng đường đầu s1 = s với vận tốc v1 là:
Thời gian đi hết nửa quãng đường còn lại s2 = s với vận tốc v2 là:
Vậy tổng thời gian đi hết cả quãng đường là:
Vận tốc trung bình của người đi xe đạp trên cả quãng đường là:
Gọi nửa quãng đường là S
\(t_1\) là thời gian đi hết nửa quãng đường đầu
\(t_1=\dfrac{s}{12}\)
\(t_2\) là thời gian đi hết nửa quãng đường sau
\(t_2=\dfrac{S}{v_2}\)
\(v_{tb}=\dfrac{S+S}{t_1+t_2}=\dfrac{2S}{\dfrac{S}{12}+\dfrac{S}{v_2}}=8\)
\(\Leftrightarrow\dfrac{2S}{\dfrac{S\left(12+v_2\right)}{12v_2}}=8\Leftrightarrow\dfrac{24v_2}{12+v_2}=8\Rightarrow v_2=6\) km/h
Ta chia quãng đường từ A đến B làm sáu phần mỗi phần gọi là: \(s\left(km\right)\)
Cả quãng đường AB là: \(6s\left(km\right)\)
Gọi t là thời gian người đó đi trong \(\dfrac{1}{3}\) quãng đường
Thời gian người đó đi trên quãng đường AB là: \(3t\left(h\right)\)
Trong \(\dfrac{1}{3}\) thời gian người đó đi với vận tốc v2 :
\(s_2=\dfrac{1}{3}\cdot6s=2s\left(km\right)\)
Quãng đường mà người đó đi với vận tốc v3 :
\(s_3=\dfrac{1}{2}\cdot6s=3s\left(km\right)\)
Mà: \(s_1+s_2+s_3=s_{AB}\)
Quãng đường mà người đó đi được với vận tốc 20km/h:
\(s_1=s_{AB}-s_2-s_3=6s-2s-3s=s\left(km\right)\)
Giá trị của 1 trong 6 phần quãng đường AB là:
\(s=20\cdot\dfrac{1}{3}\cdot3t=20t\left(km\right)\)
Ta có tổng quãng đường đi là:
\(s_1+s_2+s_3=6s\left(km\right)\)
Tổng thời gian mà người đó đi là:
\(t_1+t_2+t_3=3t\left(h\right)\)
Vận tốc trung bình của người đó trên cả quãng đường:
\(v_{tb}=\dfrac{s_{AB}}{t}=\dfrac{6s}{3t}=\dfrac{2s}{t}\left(km/h\right)\)
Mà: \(s=20t\left(km\right)\) thay vào ta có:
\(v_{tb}=\dfrac{2\cdot20t}{t}=2\cdot20=40\left(km/h\right)\)
Vận tốc v2 không thể nhỏ hơn giá trị của v1 là 20 km/h.
gọi s là nửa quãng đường => 2s là cả quãng đường
thời gian người đó đi hết nửa quãng đường đầu là :
t1 = \(\dfrac{s}{v_1}\) = \(\dfrac{s}{4}\)
vì thời gian đi hết 2 quãng đường còn lại bằng nhau nên ta có :
thời gian người đó đi hết mỗi quãng đường sau là :
t2 = t3 = \(\dfrac{s_2}{v_2}\) = \(\dfrac{s_3}{v_3}\) = \(\dfrac{s_2+s_3}{v_2+v_3}\) = \(\dfrac{s}{6+8}\) = \(\dfrac{s}{14}\)
vận tốc trung bình của ẩ quãng đường là :
vtb = \(\dfrac{2s}{t_1+t_2+t_3}\) = \(\dfrac{2s}{t_1+2t_2}\) = \(\dfrac{2s}{\dfrac{s}{4}+\dfrac{2s}{14}}\) = \(\dfrac{2}{\dfrac{1}{4}+\dfrac{2}{14}}\) = 56/11 (km/h)