chứng minh rằng :
(3n+4)2-16 chia hết cho 3 với mọi số nguyên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4n+3\right)^2-25=\left(4n+3-5\right)\left(4n+3+5\right)\)
\(=\left(4n-2\right)\left(4n+8\right)=2.\left(2n-1\right).4.\left(n+2\right)=8\left(2n-1\right)\left(n+2\right)⋮8\)
\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\)
\(\left(3n+4\right)^2-16=\left(3n+4-4\right)\left(3n+4+4\right)\)
\(=3n\left(3n+8\right)⋮3\)
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
\(\Leftrightarrow\left(3n+7-2n-3\right)\left(3n+7+2n+3\right)\)
\(=\left(5n+10\right)\left(n+4\right)⋮5\)
Ta có 2n3 + 3n2 + n = n(n + 1)(2n + 1)
Vì n và n + 1 là 2 số nguyên liên tiếp nên n(n + 1) chia hết cho 2 nên n(n + 1)(2n + 1) chia hết cho 2 (1)
Vậy để 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết cho 6 ta cần chứng minh n(n + 1)(2n + 1) chia hết cho 3
Thật vậy
Ta có TH1: n = 3k + 1 (k thuộc Z)
=> (3k + 1)(3k + 2)(6k + 3) chia hết cho 3
TH2: n = 3k + 2 (k thuộc Z)
=> (3k + 2)(3k + 3)(6k + 5) chia hết cho 3
=> n(n + 1)(2n + 1) chia hết cho 3 (2)
Từ (1) và (2) suy ra 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết 2.3 = 6 với mọi số nguyên n
bạn àm theo cách đòng dư thức á. Nếu bạn không biết làm thì nhắn xuống dưới mình giải dùm
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
\(2\equiv-1\left(mod3\right)\Rightarrow2^{2^n}\equiv1\left(mod3\right)\)
\(4\equiv1\left(mod3\right)\Rightarrow4^n\equiv1\left(mod3\right)\)
\(16\equiv1\left(mod3\right)\)
\(\Rightarrow a=2^{2^n}+4^n+16\equiv1+1+1\equiv0\left(mod3\right)\)
Vậy \(a⋮3,\forall n\inℤ^+\)
1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao
\(\left(3n+4\right)^2-16\)
\(\Leftrightarrow\left(3n+4\right)^2-4^2\)
\(\Leftrightarrow\left(3n+4-4\right)\left(3n+4+4\right)\)
\(\Leftrightarrow3n\left(3n+8\right)\) chia hết cho 3 với mọi n
(3n+4)2-16
= (3n+4)2-42
= (3n+4-4)(3n+4+4)
= 3n(3n+8)
Vì 3n(3n+8):3 với mọi n
=> (3n+4)2-16:3 với mọi n