Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, phân giác AD,DE vuông góc vs AC tại e . CMR:
a)D AHD = DAED
b) BAD cân;
c) Gọi K là giao điểm của DE và AH. Chứng minh: HDK = EDC;
d) AD^ CK
e) HE // KC;
giúp mk vs mk cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
\(\widehat{HAD}=\widehat{EAD}\)
Do đó: ΔAHD=ΔAED
b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{BDA}+\widehat{HAD}=90^0\)
mà \(\widehat{CAD}=\widehat{HAD}\)
nên \(\widehat{BAD}=\widehat{BDA}\)
Xét ΔABD có \(\widehat{BAD}=\widehat{BDA}\)
nên ΔBAD cân tại B
c: Xét ΔHDK vuông tại H và ΔEDC vuông tại E có
DH=DE
\(\widehat{HDK}=\widehat{EDC}\)
Do đó: ΔHDK=ΔEDC
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
AH=AE
=>ΔAHD=ΔAED
b: DH=DE
DE<DC
=>DH<DC
c: Xét ΔAKC có
CH,KE là đường cao
CH căt KE tại D
=>D là trực tâm
=>AD vuông góc KC
a) Xét \(\Delta ABC\)có AB = 5cm; AC = 12cm. Theo định lý Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=5^2+12^2\)
\(BC^2=25+144\)
\(BC^2=169\)
\(BC=13\)
Vậy cạnh BC = 13cm
b)Xét tam giác AHD và tam giác AKD ta có:
\(\widehat{AHD}=\widehat{AKD}=90^o\)
AD chung
\(\widehat{DAH}=\widehat{DAK}\)(AD là tia phân giác)
=> tam giác AHD = tam giác AKD (g.c.g)
1: Xét ΔAHD vuông tại H có ΔAED vuông tại E có
AD chung
\(\widehat{HAD}=\widehat{EAD}\)
Do đó; ΔAHD=ΔAED
2: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{BDA}+\widehat{HAD}=90^0\)
mà \(\widehat{HAD}=\widehat{CAD}\)
nên \(\widehat{BAD}=\widehat{BDA}\)
hay ΔBAD cân tại B
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
AH=AE
=>ΔAHD=ΔAED
b: ΔAHD=ΔAED
=>DH=DE
mà DE<DC
nên DH<DC
c: Xét ΔDHK vuông tại H và ΔDEC vuông tại E có
DH=DE
góc HDK=góc EDC
=>ΔDHK=ΔDEC
=>DK=DC
=>ΔDKC cân tại D
d: AH+HK=AK
AE+EC=AC
mà AH=AE và HK=EC
nên AK=AC
mà DK=DC
nên AD là trung trực của KC
mà M là trung điểm của CK
nên A,D,M thẳng hàng
bạn j ơi mik thấy bạn nghe quen lắm bạn học lớp 8A1 trường văn điển phải không ạ
bạn là lê ngọc huyền
học lớp 8A1
trường thcs thị trấn văn điển
cô hằng phải không