Cho tam giác ABC vuông ở A có trung tuyến AM. Kéo dài AM lấy MD = MA. Chứng minh
1) CD // AB
2) tam giác ABC = tam giác CAD
3) AM = BC/2
các ban ve hinh rui giai giup mk luon nha. Ai giai dung, nhanh mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABM và ΔDCM có:
BM=MC(gt)
\(\widehat{BMA}=\widehat{CMD}\)(đđ)
AM=DM
=> ΔABM=ΔDCM(c.g.c)
=>\(\widehat{ABM}=\widehat{MCD}\) .Mà 2 góc này ở vị trí soletrong)
=>AB//CD
b)Vì ΔABC vuông tại A(gt)
=> AM=BM=MC
Có: AD=AM+MD
BC=MB+MC
Mà: AM=BM(cmt); MD=MC(cmt)
=>BC=AM
Vì ΔABM=ΔDCM(cmt)
=>AB=DC
Xét ΔABC và ΔCDA có:
AB=DC(cmt)
AC: cạnh chung
BC=AD(cmt)
=>ΔABC=ΔCDM(c.c.c)
c) Vì ΔABC vuông tại A(gt)
=>AM=BC/2
a, Có: AM là trung tuyến ΔABC
\(\Rightarrow\) M là trung điểm BC
\(\Rightarrow MB=MC\)
Xét ΔABM và ΔCDM có:
\(MB=MC\left(cmt\right)\)
\(\widehat{AMB}=\widehat{CMD}\left(đ^2\right)\)
\(MA=MD\)
\(\Rightarrow\) ΔABM = ΔCDM ( c.g.c )
\(\Rightarrow\widehat{BAM}=\widehat{DCM}\left(2gtu\right)\)
\(\Rightarrow AB//CD\)
Mà \(BA⊥AC\)
\(\Rightarrow DC⊥AC\)
b, Có: ΔABM = ΔCDM ( cmt )
\(\Rightarrow\left\{{}\begin{matrix}BA=DC\left(2ctu\right)\\\widehat{ABM}=\widehat{CDM}\left(2gtu\right)\end{matrix}\right.\)
Xét ΔABC và ΔCDA có:
\(\widehat{ABM}=\widehat{CDM}\left(cmt\right)\)
\(AB=CD\left(cmt\right)\)
\(\widehat{BAC}=\widehat{DCA}\left(=90^o\right)\)
\(\Rightarrow\) ΔABC = ΔCDA ( g.c.g )
\(\Rightarrow BC=DA\left(2ctu\right)\)
Có: M là trung điểm BC
M là trung điểm AD ( MA = MD )
Mà \(BC=AD\)
\(\Rightarrow MA=MB\)
\(\Rightarrow\) ΔABM cân tại M
Mà \(\widehat{ABM=60^o}\)
\(\Rightarrow\) ΔABM là tam giác đều.
tự vẽ hình:)
a,
Xét Δ MBA và ΔMCD, có :
MA = MD (gt)
MB = MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{CMD}\) (đối đỉnh)
=> Δ MBA = Δ MCD (c.g.c)
=> AB = CD
Ta có : \(\widehat{MBA}=\widehat{MCD}\) (Δ MBA = Δ MCD)
=> AB // CD (sole - trong)
b,
Ta có :
AB // CD (cmt)
Mà BA ⊥ AC
=> CD ⊥ AC
Xét Δ ABC và Δ CDA, có :
AB = CD (gt)
\(\widehat{BAC}=\widehat{DCA}=90^o\)
\(\widehat{CBA}=\widehat{ADC}\) (Δ MBA = Δ MCD)
=> Δ ABC = Δ CDA (g.c.g)
a, Áp dụng ĐL Pytago ta được
\(AB^2+AC^2=BC^2\)
\(3^2+4^2=BC^2\)
\(BC=5\)
b,
a, Xét \(\Delta\)ABM và \(\Delta\)DMC có :
BM=MC (gt)
góc BMA = DMC ( đối đỉnh)
AM=MD(gt)
do đó \(\Delta\)ABM= \(\Delta\)DMC ( c.g.c)
=) góc ABM= DCM ( 2 góc tương ứng )
mà ABM và DCM ở vị trí so le trong =) CD//AB
b, CD//AB ( theo câu a ) =) DCA = 900
Xét \(\Delta\)ABC và \(\Delta\)CAD có :
AB=CD (\(\Delta\) ABM=\(\Delta\)DMC)
BAC=DCA=90
AC: cạnh chung
=) \(\Delta\)ABC=\(\Delta\)CAD ( c.g.c)
c, \(\Delta\)ABC= \(\Delta\)CAD ( theo câu b) =) MAC=MCA ( 2 góc tương ứng )
=) \(\Delta\)MAC cân tại M =) MA=MC mà MC=MB ( gt)
=) MA=MB=MB mà BC = MB+MC = 2MB = 2MA
=) AM = \(\dfrac{BC}{2}\)