K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

ĐK: \(x\ge-1;y\ge3;z\ge1\)

\(\sqrt{x+1}+\sqrt{y-3}+\sqrt{z-1}=\dfrac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow x+1-2\sqrt{x+1}+1+y-3-2\sqrt{y-3}+1+z-1-2\sqrt{z-1}+1=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-1}-1\right)^2=0\)

Ta thấy: \(\left(\sqrt{x+1}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-1}-1\right)^2\ge0\)

Đẳng thức xảy ra khi:

\(\left\{{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{y-3}=1\\\sqrt{z-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\\z=2\end{matrix}\right.\)

26 tháng 8 2021

Cách khác:

ĐK: \(x\ge-1;y\ge3;z\ge1\)

Áp dụng BĐT \(ab\le\dfrac{a^2+b^2}{2}\).

\(\sqrt{x+1}\le\dfrac{x+1+1}{2}=\dfrac{x+2}{2}\)

\(\sqrt{y-3}\le\dfrac{y-3+1}{2}=\dfrac{y-2}{2}\)

\(\sqrt{z-1}\le\dfrac{z-1+1}{2}=\dfrac{z}{2}\)

Cộng vế theo vế các BĐT trên ta được:

\(\sqrt{x+1}+\sqrt{y-3}+\sqrt{z-1}\le\dfrac{1}{2}\left(x+y+z\right)\)

Đẳng thức xảy ra khi:

\(\left\{{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{y-3}=1\\\sqrt{z-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\\z=2\end{matrix}\right.\)

NV
23 tháng 8 2021

ĐKXĐ: \(x\ge-1;y\ge3;z\ge1\)

\(\Leftrightarrow x+y+z-2\sqrt{x+1}-2\sqrt{y-3}-2\sqrt{z-1}=0\)

\(\Leftrightarrow\left(x+1-2\sqrt{x+1}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+\left(z-1-2\sqrt{z-1}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-1}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+1}-1=0\\\sqrt{y-3}-1=0\\\sqrt{z-1}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\\z=2\end{matrix}\right.\)

NV
8 tháng 1 2022

Đề bài sai, biểu thức này ko có min

8 tháng 1 2022

vậy nó có max không thầy, nếu có thầy có thể giúp em tìm max ạ

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

Từ \(x+y+z=xyz\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

Đặt \((\frac{1}{a}, \frac{1}{b}, \frac{1}{c})=(x,y,z)\), trong đó $a,b,c>0$ thì ta có:

\(ab+bc+ac=1\) và cần phải CMR:

\(P=\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}+\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}+\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}\)

-----------------------------------------------

Ta có:
\(\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}=\sqrt{(b^2+1)(c^2+1)}-b\sqrt{c^2+1}-c\sqrt{b^2+1}\)

\(=\sqrt{(b^2+ab+bc+ac)(c^2+ac+bc+ab)}-b\sqrt{c^2+ac+bc+ab}-c\sqrt{b^2+ab+bc+ac}\)

\(=\sqrt{(b+a)(b+c)(c+a)(c+b)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}\)

\(=(b+c)\sqrt{(a+b)(a+c)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}(1)\)

Tương tự:

\(\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}=(a+c)\sqrt{(b+a)(b+c)}-a\sqrt{(c+a)(c+b)}-c\sqrt{(a+b)(a+c)}(2)\)

\(\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}=(a+b)\sqrt{(c+a)(c+b)}-b\sqrt{(a+b)(a+c)}-a\sqrt{(b+c)(b+a)}(3)\)

Từ \((1);(2);(3)\Rightarrow P=(b+c-c-b)\sqrt{(a+b)(a+c)}+(a+c-c-a)\sqrt{(b+a)(b+c)}+(a+b-b-a)\sqrt{(c+a)(c+b)}\)

\(=0\)

Ta có đpcm.

22 tháng 3 2019

sao dòng 2 đoạn ''ta có...'' lại ra đc như thế ạ?

\(\sqrt{2x\left(y+z\right)}< =\dfrac{2x+y+z}{2}\)

=>\(\dfrac{1}{\sqrt{x\left(y+z\right)}}>=\dfrac{2\sqrt{2}}{2x+y+z}\)

=>\(P>=2\sqrt{2}\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)

\(\Leftrightarrow P>=2\sqrt{2}\cdot\dfrac{\left(1+1+1\right)^2}{\left(2x+y+z\right)+x+2y+z+x+y+2z}=\dfrac{18\sqrt{2}}{4\cdot18\sqrt{2}}=\dfrac{1}{4}\)

Dấu = xảy ra khi x=y=z=6căn 2

NV
13 tháng 12 2020

\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)

\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)

\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)

2 tháng 6 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{1}{\sqrt{x}+2\sqrt{y}}\le\dfrac{1}{9}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{y}}\right)\)

Tương tự cho 2 BĐT trên ta có:

\(\dfrac{1}{3}VP\le\dfrac{1}{9}\cdot3\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)=\dfrac{1}{3}VT\)

Xảy ra khi \(x=y=z\)